Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closest Look Ever at the Edge of a Black Hole

05.09.2008
Astronomers have taken the closest look ever at the giant black hole in the center of the Milky Way. By combining telescopes in Hawaii, Arizona, and California, they detected structure at a tiny angular scale of 37 micro-arcseconds - the equivalent of a baseball seen on the surface of the moon, 240,000 miles distant.

"This technique gives us an unmatched view of the region near the Milky Way's central black hole," said Sheperd Doeleman of MIT, first author of the study that will be published in the Sept. 4 issue of the journal Nature.

"No one has seen such a fine-grained view of the galactic center before," agreed co-author Jonathan Weintroub of the Harvard-Smithsonian Center for Astrophysics (CfA). "We've observed nearly to the scale of the black hole event horizon - the region inside of which nothing, including light, can ever escape."

Using a technique called Very Long Baseline Interferometry (VLBI), a team of astronomers led by Doeleman employed an array of telescopes to study radio waves coming from the object known as Sagittarius A* (A-star). In VLBI, signals from multiple telescopes are combined to create the equivalent of a single giant telescope, as large as the separation between the facilities. As a result, VLBI yields exquisitely sharp resolution.

The Sgr A* radio emission, at a wavelength of 1.3 mm, escapes the galactic center more easily than emissions at longer wavelengths, which tend to suffer from interstellar scattering. Such scattering acts like fog around a streetlamp, both dimming the light and blurring details. VLBI is ordinarily limited to wavelengths of 3.5 mm and longer; however, using innovative instrumentation and analysis techniques, the team was able to tease out this remarkable result from 1.3-mm VLBI data.

The team clearly discerned structure with a 37 micro-arcsecond angular scale, which corresponds to a size of about 30 million miles (or about one-third the earth-sun distance) at the galactic center. With three telescopes, the astronomers could only vaguely determine the shape of the emitting region. Future investigations will help answer the question of what, precisely, they are seeing: a glowing corona around the black hole, an orbiting "hot spot," or a jet of material. Nevertheless, their result represents the first time that observations have gotten down to the scale of the black hole itself, which has a "Schwarzschild radius" of 10 million miles.

"This pioneering paper demonstrates that such observations are feasible," commented theorist Avi Loeb of Harvard University, who is not a member of the discovery team. "It also opens up a new window for probing the structure of space and time near a black hole and testing Einstein's theory of gravity."

In 2006, Loeb and his colleague, Avery Broderick, examined how ultra-high-resolution imaging of the galactic center could be used to look for the shadow or silhouette of the supermassive black hole lurking there, as well as any "hot spots" within material flowing into the black hole. Astronomers now are poised to test those theoretical predictions.

"This result, which is remarkable in and of itself, also confirms that the 1.3-mm VLBI technique has enormous potential, both for probing the galactic center and for studying other phenomena at similar small scales," said Weintroub.

The team plans to expand their work by developing novel instrumentation to make more sensitive 1.3-mm observations possible. They also hope to develop additional observing stations, which would provide additional baselines (pairings of two telescope facilities at different locations) to enhance the detail in the picture. Future plans also include observations at shorter, 0.85-mm wavelengths; however, such work will be even more challenging for many reasons, including stretching the capabilities of the instrumentation, and the requirement for a coincidence of excellent weather conditions at all sites.

"The technical capabilities that have been developed for the Smithsonian's Submillimeter Array on Mauna Kea are a crucial contribution to this program," said Jim Moran, one of the CfA participants in this work.

Other CfA or former CfA researchers who participated on the project include Ken Young and Dan Marrone.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

David Aguilar | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

nachricht The geometry of an electron determined for the first time
23.05.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>