Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clocking Neptune's Spin

30.06.2011
By tracking atmospheric features on Neptune, a UA planetary scientist has accurately determined the planet's rotation, a feat that had not been previously achieved for any of the gas planets in our solar system except Jupiter.

A day on Neptune lasts precisely 15 hours, 57 minutes and 59 seconds, according to the first accurate measurement of its rotational period made by University of Arizona planetary scientist Erich Karkoschka.

His result is one of the largest improvements in determining the rotational period of a gas planet in almost 350 years since Italian astronomer Giovanni Cassini made the first observations of Jupiter's Red Spot.

"The rotational period of a planet is one of its fundamental properties," said Karkoschka, a senior staff scientist at the UA's Lunar and Planetary Laboratory. "Neptune has two features observable with the Hubble Space Telescope that seem to track the interior rotation of the planet. Nothing similar has been seen before on any of the four giant planets."

The discovery is published in Icarus, the official scientific publication of the Division for Planetary Sciences of the American Astronomical Society.

Unlike the rocky planets – Mercury, Venus, Earth and Mars – which behave like solid balls spinning in a rather straightforward manner, the giant gas planets – Jupiter, Saturn, Uranus and Neptune – rotate more like giant blobs of liquid. Since they are believed to consist of mainly ice and gas around a relatively small solid core, their rotation involves a lot of sloshing, swirling and roiling, which has made it difficult for astronomers to get an accurate grip on exactly how fast they spin around.

"If you looked at Earth from space, you'd see mountains and other features on the ground rotating with great regularity, but if you looked at the clouds, they wouldn't because the winds change all the time," Karkoschka explained. "If you look at the giant planets, you don't see a surface, just a thick cloudy atmosphere."

"On Neptune, all you see is moving clouds and features in the planet's atmosphere. Some move faster, some move slower, some accelerate, but you really don't know what the rotational period is, if there even is some solid inner core that is rotating."

In the 1950s, when astronomers built the first radio telescopes, they discovered that Jupiter sends out pulsating radio beams, like a lighthouse in space. Those signals originate from a magnetic field generated by the rotation of the planet's inner core.

No clues about the rotation of the other gas giants, however, were available because any radio signals they may emit are being swept out into space by the solar wind and never reach Earth.

"The only way to measure radio waves is to send spacecraft to those planets," Karkoschka said. "When Voyager 1 and 2 flew past Saturn, they found radio signals and clocked them at exactly 10.66 hours, and they found radio signals for Uranus and Neptune as well. So based on those radio signals, we thought we knew the rotation periods of those planets."

But when the Cassini probe arrived at Saturn 15 years later, its sensors detected its radio period had changed by about 1 percent. Karkoschka explained that because of its large mass, it was impossible for Saturn to incur that much change in its rotation over such a short time.

"Because the gas planets are so big, they have enough angular momentum to keep them spinning at pretty much the same rate for billions of years," he said. "So something strange was going on."

Even more puzzling was Cassini's later discovery that Saturn's northern and southern hemispheres appear to be rotating at different speeds.

"That's when we realized the magnetic field is not like clockwork but slipping," Karkoschka said. "The interior is rotating and drags the magnetic field along, but because of the solar wind or other, unknown influences, the magnetic field cannot keep up with respect to the planet's core and lags behind."

Instead of spacecraft powered by billions of dollars, Karkoschka took advantage of what one might call the scraps of space science: publicly available images of Neptune from the Hubble Space Telescope archive. With unwavering determination and unmatched patience, he then pored over hundreds of images, recording every detail and tracking distinctive features over long periods of time.

Other scientists before him had observed Neptune and analyzed images, but nobody had sleuthed through 500 of them.

"When I looked at the images, I found Neptune's rotation to be faster than what Voyager observed," Karkoschka said. "I think the accuracy of my data is about 1,000 times better than what we had based on the Voyager measurements – a huge improvement in determining the exact rotational period of Neptune, which hasn't happened for any of the giant planets for the last three centuries."

Two features in Neptune's atmosphere, Karkoschka discovered, stand out in that they rotate about five times more steadily than even Saturn's hexagon, the most regularly rotating feature known on any of the gas giants.

Named the South Polar Feature and the South Polar Wave, the features are likely vortices swirling in the atmosphere, similar to Jupiter's famous Red Spot, which can last for a long time due to negligible friction. Karkoschka was able to track them over the course of more than 20 years.

An observer watching the massive planet turn from a fixed spot in space would see both features appear exactly every 15.9663 hours, with less than a few seconds of variation.

"The regularity suggests those features are connected to Neptune's interior in some way," Karkoschka said. "How they are connected is up to speculation."

One possible scenario involves convection driven by warmer and cooler areas within the planet's thick atmosphere, analogous to hot spots within the Earth's mantle, giant circular flows of molten material that stay in the same location over millions of years.

"I thought the extraordinary regularity of Neptune's rotation indicated by the two features was something really special," Karkoschka said.

"So I dug up the images of Neptune that Voyager took in 1989, which have better resolution than the Hubble images, to see whether I could find anything else in the vicinity of those two features. I discovered six more features that rotate with the same speed, but they were too faint to be visible with the Hubble Space Telescope, and visible to Voyager only for a few months, so we wouldn't know if the rotational period was accurate to the six digits. But they were really connected. So now we have eight features that are locked together on one planet, and that is really exciting."

In addition to getting a better grip on Neptune's rotational period, the study could lead to a better understanding of the giant gas planets in general.

"We know Neptune's total mass but we don't know how it is distributed," Karkoschka explained. "If the planet rotates faster than we thought, it means the mass has to be closer to the center than we thought. These results might change the models of the planets' interior and could have many other implications."

LINK:

Neptune’s Rotational Period Suggested by the Extraordinary Stability of Two Features, Icarus, article in press (accepted manuscript), doi:10.1016/j.icarus.2011.05.013

http://www.sciencedirect.com/science/article/pii/S0019103511001783

CONTACTS:

Erich Karkoschka
Lunar and Planetary Laboratory
The University of Arizona
520-621-3994
erich@lpl.arizona.edu
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>