Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change and atmospheric circulation will make for uneven ozone recovery

15.04.2009
Earth's ozone layer should eventually recover from the unintended destruction brought on by the use of chlorofluorocarbons (CFCs) and similar ozone-depleting chemicals in the 20th century. But new research by NASA scientists suggests the ozone layer of the future is unlikely to look much like the past because greenhouse gases are changing the dynamics of the atmosphere.

Previous studies have shown that while the buildup of greenhouse gases makes it warmer in troposphere – the level of atmosphere from Earth's surface up to 10 kilometers (6 miles) altitude – it actually cools the upper stratosphere – between 30 to 50 kilometers high (18 to 31 miles).

This cooling slows the chemical reactions that deplete ozone in the upper stratosphere and allows natural ozone production in that region to outpace destruction by CFCs.

But the accumulation of greenhouse gases also changes the circulation of stratospheric air masses from the tropics to the poles, NASA scientists note. In Earth's middle latitudes, that means ozone is likely to "over-recover," growing to concentrations higher than they were before the mass production of CFCs. In the tropics, stratospheric circulation changes could prevent the ozone layer from fully recovering.

"Most studies of ozone and global change have focused on cooling in the upper stratosphere," said Feng Li, an atmospheric scientist at the Goddard Earth Sciences and Technology Center at the University of Maryland Baltimore County, Baltimore, Md. and lead author of the study. "But we find circulation is just as important. It's not one process or the other, but both."

The findings are based on a detailed computer model that includes atmospheric chemical effects, wind changes, and solar radiation changes. Li's experiment is part of an ongoing international effort organized by the United Nations Environment Programme's Scientific Assessment Panel to assess the state of the ozone layer. Li and colleagues published their analysis in March in the journal Atmospheric Chemistry and Physics.

Working with Richard Stolarski and Paul Newman of NASA's Goddard Space Flight Center, Greenbelt, Md., Li adapted the Goddard Earth Observing System Chemistry-Climate Model (GEOS-CCM) to examine how climate change will affect ozone recovery. The team inserted past measurements and future projections of ozone-depleting substances and greenhouse gases into the model. Then the model projected how ozone, the overall chemistry, and the dynamics of the stratosphere would change through the year 2100.

"In the real world, we have observed statistically significant turnaround in ozone depletion, which can be attributed to the banning of ozone-depleting substances," said Richard Stolarski, an atmospheric chemist at Goddard and a co-author of the study. "But making that connection is complicated by the response of ozone to greenhouse gases."

The researchers found that greenhouse gases alter a natural circulation pattern that influences ozone distribution. Brewer-Dobson circulation is like a pump to the stratosphere, moving ozone from the lower parts of the atmosphere, into the upper stratosphere over the tropics. Air masses then flow north or south through the stratosphere, away from the tropics toward the poles.

In Li's experiment, this circulation pump accelerated to a rate where the ozone flowing upward and outward from the tropics created a surplus at middle latitudes. Though the concentration of chlorine and other ozone-depleting substances in the stratosphere will not return to pre-1980 levels until 2060, the ozone layer over middle latitudes recovered to pre-1980 levels by 2025.

The Arctic – which is better connected to mid-latitude air masses than the Antarctic -- benefitted from the surplus in the northern hemisphere and from the overall decline of ozone-depleting substances to recover by 2025. Globally averaged ozone and Antarctic concentrations catch up by 2040, as natural atmospheric production of ozone resumes.

This recovery in the middle and polar latitudes has mixed consequences, Li noted. It might have some benefits, such as lower levels of ultraviolet radiation reaching the Earth's surface and correspondingly lower rates of skin cancer. On the other hand, it could have unintended effects, such as increasing ozone levels in the troposphere, the layer of atmosphere at Earth's surface. The model also shows a continuing ozone deficit in the stratosphere over the tropics. In fact, when the model run ended at year 2100, the ozone layer over the tropics still showed no signs of recovery.

In February, researchers from Johns Hopkins University, Baltimore, teamed with Stolarski and other NASA scientists on a similar paper suggesting that increasing greenhouse gases would delay or even postpone the recovery of ozone levels in the lower stratosphere over some parts of the globe. Using the same model as Li, Stolarski, and Newman, the researchers found that the lower stratosphere over tropical and mid-southern latitudes might not return to pre-1980s levels of ozone for more than a century, if ever.

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/ozone_recovery.html

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>