The Clear Future of Electronics: Transparent Memory Device

The new chip is similar in type to an existing technology known as complementary metal-oxide semiconductor (CMOS) memory — common commercial chips that provide the data storage for USB flash drives and other devices. Like CMOS devices, the new chip provides “non-volatile” memory, meaning that it stores digital information without losing data when it is powered off. Unlike CMOS devices, however, the new TRRAM chip is almost completely clear.

Why is transparency important? Clear electronics may make your room or wall more spacious by allowing electronic devices to be consolidated and stacked in small clear spaces. The technology may also enable the development of clear computer monitors and televisions that are imbedded inside glass or transparent plastic. The Korean team is also developing a TRRAM using flexible materials.

“It is a new milestone of transparent electronic systems,” says researcher Jung Won Seo, who is the first author on the paper. “By integrating TRRAM device with other transparent electronic components, we can create a total see-through embedded electronic system.”

Technically, TRRAM device rely upon an existing technology known as resistive random access memory (RRAM), which is already in commercial development for future electronic data storage devices. RRAM is built using metal oxide materials, which are very transparent. What the Korean team did was to build a chip by sandwiching these metal oxide materials between equally transparent electrodes and substrates.

According to the Korean team, TRRAM devices are easy to fabricate and may be commercially available in just 3-4 years. Don't expect them to replace existing CMOS devices, however. Instead, Seo predicts, the new transparent devices will drive electronics in new directions.

“We are sure that TRRAM will become one of alternative devices to current CMOS-based flash memory in the near future after its reliability is proven and once any manufacturing issues are solved,” says Professor Jae-Woo Park, who is Seo's co-advisor and co-author on the paper. He adds that the new devices have the potential to be manufactured cheaply because any transparent materials can be utilized as substrate and electrode. They also may not require incorporating rare elements such as Indium.

This work is supported by the Brain Korea 21 Project, School of Information Technology sponsored by Korea Advanced Institute of Science and Technology (KAIST).

The article “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching” by Jung Won Seo, Jae-Woo Park, Keong Su Lim, Ji-Hwan Yang and Sang Jung Kang was published on December 3, 2008 in Appl. Phys. Lett. (Volume 93, Issue 22). The article is available at http://link.aip.org/link/?APPLAB/93/223505/1

ABOUT THE JOURNAL
Published by the American Institute of Physics (AIP), Applied Physics Letters is a weekly journal featuring concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. See: http://apl.aip.org/.
ABOUT AIP
The American Institute of Physics (AIP) is a non-profit corporation chartered in 1931 for the purpose of advancement and diffusion of the knowledge of physics and its application to human welfare. An umbrella organization for 10 Member Societies, AIP represents over 134,000 scientists, engineers and educators and is one of the world's largest publishers of physics journals. A total-solution provider in publishing services, AIP publishes its own 12 journals (many of which have the highest impact factors in their category), two magazines, and the AIP Conference Proceedings series. Its online publishing platform Citation hosts more than 1,000,000 articles from more than 175 scholarly journals, as well as conference proceedings, and other publications of 25 learned society publishers.

Media Contact

Jason Socrates Bardi Newswise Science News

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors