Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charge transport jamming in solar cells

24.09.2014

Polymer researchers from Mainz decipher the working mechanism of novel perovskite solar cells.

Researchers from the Max Planck Institute for Polymer Research in Mainz, jointly with scientists from Switzerland and Spain, have investigated the working mechanism of a new type of solar cells in which an organic-inorganic perovskite compound forms the light-absorbing layer. These cells can be produced in an inexpensive way with the simplest means.


Schematic of the working principle of a perovskite solar cell.

S. Weber


Measuring a solar cell: Rüdiger Berger (left) and Stefan Weber (right).

Photo: N. Bouvier

In comparison, the conventional silicon solar cells are energy-intensive and expensive to manufacture. Using Kelvin probe microscopy, the team of Mainz researchers around Rüdiger Berger and Stefan Weber observed the charge transport inside an illuminated solar cell. They found out that the positively charged carriers accumulated in a particular region in the solar cell.

This phenomenon could be compared to a bottleneck on a freeway: should many cars – or charge carriers in our case – want to pass the bottleneck at the same time, the traffic will inevitably slow down or come to a halt. According to these findings, the perovskite solar cells could soon achieve efficiencies comparable to those of commercial solar cells. Their results are published in the scientific journal “Nature Communications”.

The perovskite solar cells produced in a laboratory directed by the Swiss scientist Michael Grätzel contain a layer of an organic-inorganic compound which crystallizes in the cubic perovskite structure. "These structures absorb light very well", says Rüdiger Berger explaining the working mechanism of these solar cells.

"The light absorbed by the perovskite layer snatches an electron from an atom creating a positively charged electron vacancy - also known as "hole". Now the electrons just have to be brought to the electrode on the one side of the cell and the holes to the other side. That’s all we need for a working solar cell!" In the solar cell, the perovskite film therefore rests on a nanostructured layer of titanium dioxide that collects the electrons generated upon exposure to light and conducts them to the lower electrode.

The holes are conducted to the upper electrode by a layer of the organic hole conductor material spiro-OMeTAD situated on top of the perovskite film. "The many different layers in the solar cell are extremely important. They ensure an efficient sorting between the two charge carrier types" adds Berger's colleague Stefan Weber. "However, the charge carriers have to overcome a small barrier every time they jump from one material to the other. These barriers act like a construction site on a busy freeway where the vehicles clog. This charge transport jamming in the solar cell leads to losses and thus to a lower efficiency".

In order to observe the charge transport within the solar cell, the Mainz researchers have split the cell in two halves. They then polished the cross section with a finely focused ion beam. With the fine tip of a scanning force microscope, they were able to image the structure of the layer down to a resolution of a few nanometers. In addition, Kelvin probe microscopy was contemporaneously used to measure the local electrical potential underneath the tip. From the potential distribution, the researchers were then able to derive the field distribution and thus the charge transport occurring through the various layers of the cell.

In several measurement series, the researchers found that a strong accumulation of positive charges takes place in the perovskite layer upon exposure to light. They suppose that titanium dioxide, the electron conductor, does its job much more efficiently than the hole conductor. In other words, the holes do not reach their electrode as fast as the electrons do; they accumulate along the way. The excess of positive charges in the perovskite layer results in the creation of a reversed electric field which also contributes to the slow down of the hole transport.

“We could for the first time correlate the charge distribution with the individual material layers in the cell”, says Rüdiger Berger. "The charge transport jamming of positive charges in the illuminated perovskite layer tells us that the transport through the hole conductor currently constitutes the bottleneck for the efficiency of the solar cell". The observations of the Mainz researchers can help to increase the efficiency of the perovskite solar cells over the 20% mark and thus offer a genuine alternative to the conventional silicon solar cells.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/4055851/PM9_14en - press release and original publication
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>