Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos in the microlaser

22.06.2011
Würzburg physicists have created a microlaser with unique properties. They have also succeeded in making the laser behave chaotically. In the future, it may be possible to use this for a new, secure form of data transmission.

Triggering chaotic behavior in the microcosm: this is what Stephan Reitzenstein and his team from the Institute of Physics at the University of Würzburg have achieved in collaboration with their Israeli colleague Ido Kanter, as reported on in the latest issue of the journal “Nature Communications”. Using a tiny laser, the researchers continually sent a fraction of the emitted light back into the laser, throwing the light emission process “out of kilter”. The microlaser then started emitting light particles (photons) in a chaotic pulse sequence.


A quantum-dot microlaser emits light that is deliberately cast back into the laser via a mirror. This disturbs the laser’s operation so much so that the emission behavior becomes chaotic. On the right, the result of a photon statistics measurement from which physicists are able to detect a chaotic pulse sequence, given that without chaos no pulses would appear. Image: Ferdinand Albert

“This chaos is extremely interesting from a fundamental physics point of view,” explains Reitzenstein. But the targeted feedback also offers application possibilities, he adds. “It might be used in the future for optical amplifiers and switches. In addition, the negative feedback of two microlasers over a long distance is likely to provide synchronization of the chaotic pulse sequence, enabling the realization of a new, secure form of data transmission.”

Microlasers made in Würzburg

The microlasers are made using a sophisticated procedure in the microstructure laboratory of the Institute of Physics at Würzburg. They look like tiny towers with a diameter of less than a tenth of a human hair, and they consist of a special sequence of extremely thin semiconductor layers. They are driven electrically using an elaborately designed ring contact.

During production, special nanostructures that can emit light – so-called quantum dots – are placed in the center of the microlasers. What makes them special? “The microlasers have been designed such that the photons emitted by the quantum dots are coupled into the lasing mode with extremely high probability and can therefore be used for very efficient laser operation,” as Reitzenstein says.

Close to the ultimate model

On account of their special design, the Würzburg microlasers can be driven with no more than a few microamperes and only around ten quantum dots. In conventional semiconductor lasers, on the other hand, pump currents in the milliampere range as well as some 1,000 to 10,000 quantum dots are needed.

“Intensive research is being conducted worldwide in order to create the ‘ultimate’ micro- or nanolaser that only contains a single quantum dot as a gain medium,” explains Reitzenstein. The Würzburg physicists have now come very close to this goal with their model.

Chaotic pulse sequence produced

Such highly sophisticated quantum dot microlasers react very sensitively to fluctuations in the quantity of light particles in the laser resonator. Even the emission of a single photon can throw the laser’s operation into confusion. The scientists turned the tables and cast the emitted light back onto the microlaser with a mirror continuously, precisely, and in a controlled fashion in order to disturb its operation.

It transpired that if the lasers emit only a few tens of nanowatts of light power, the influence of the feedback cannot be measured directly. “Instead, complex photon statistics measurements are needed to prove the expected chaotic behavior,” says Reitzenstein. But here the physicists achieved success: they were able to prove that disturbing the laser leads to a chaotic pulse sequence in which each light pulse contains only around 100 photons.

Next steps in the research

“We are currently preparing experiments to synchronize two lasers as far as the quantum limit of just one photon moving back and forth,” says Reitzenstein. “If we succeed, we will be a step closer to a fundamental understanding of synchronization and to a secure form of data transmission.”

There is also another hurdle to negotiate: at present, the microlasers only work in extremely cold conditions, at below minus 150 degrees Celsius. Operation at room temperature should be possible, however, if the quantum dots are optimized for this purpose. The physicists are currently pursuing this goal in a separate project.

“Observing chaos for quantum-dot microlasers with external feedback”, Ferdinand Albert, Caspar Hopfmann, Stephan Reitzenstein, Christian Schneider, Sven Höfling, Lukas Worschech, Martin Kamp, Wolfgang Kinzel, Alfred Forchel & Ido Kanter, Nature Communications, doi 10.1038/ncomms1370

Contact

Dr. Stephan Reitzenstein, Institute of Physics at the University of Würzburg,
T +49 (0)931 31-85116, stephan.reitzenstein@physik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Matter falling into a black hole at 30 percent of the speed of light
24.09.2018 | Royal Astronomical Society

nachricht Scientists solve the golden puzzle of calaverite
24.09.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>