Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Nanotubes Couple Light and Matter

15.11.2016

Scientists from Heidelberg and St Andrews work on the basics of new light sources from organic semiconductors

With their research on nanomaterials for optoelectronics, scientists from Heidelberg University and the University of St Andrews (Scotland) have succeeded for the first time to demonstrate a strong interaction of light and matter in semiconducting carbon nanotubes.


The formation of exciton-polaritons through strong light-matter coupling is a promising strategy for producing electrically pumped carbon-based lasers. Scientists from Heidelberg University and the University of St Andrews (Scotland) have now, for the first time, demonstrated this strong light-matter coupling in semiconducting carbon nanotubes.

Figure: Arko Graf (Heidelberg University)

Such strong light-matter coupling is an important step towards realising new light sources, such as electrically pumped lasers based on organic semiconductors. They would be, amongst other things, important for applications in telecommunications. These results are the outcome of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte Gather (St Andrews), and have been published in “Nature Communications”.

Organic semiconductors based on carbon are a cost and energy-efficient alternative to conventional inorganic semiconductors such as silicon. Light-emitting diodes consisting of these materials are already ubiquitously found in smartphone displays.

Further components for application in lighting technology, data transmission and photovoltaics are currently at the prototype stage. So far, however, it has not been possible to produce one important component of optoelectronics with organic materials – the electrically pumped laser. The main reason is that organic semiconductors have only limited capacity for charge transport.

Prof. Zaumseil explains that research over the past few years has increasingly focused on laser-like light emission of organic semiconductors based on light-matter coupling. If photons (light) and excitons (matter) are brought to interact sufficiently, they couple so strongly that they produce so called exciton-polaritons.

These are quasi-particles that also emit light. Under certain conditions, such emissions can take on the properties of laser light. Combined with sufficiently fast charge transport, exciton-polaritons could bring the production of an electrically pumped carbon-based laser within reach, according to Jana Zaumseil who is the head of the Nanomaterials for Optoelectronics research group at the Heidelberg University's Institute for Physical Chemistry.

Thanks to the cooperation between Prof. Zaumseil and Prof. Gather, it was possible for the first time to demonstrate the formation of exciton-polaritons in semiconducting carbon nanotubes. Unlike other organic semiconductors, these microscopically small, tube-shaped carbon structures transport positive and negative charges extremely well.

PhD student Arko Graf, the first author of the study, explains that exciton-polaritons also display extraordinary optical properties. The scientists in Heidelberg and St Andrews see their research results as an important step towards realising electrically pumped lasers on the basis of organic semiconductors.

Prof. Zaumseil emphasises: “Besides the potential generation of laser light, exciton-polaritons already allow us to vary the wavelength of the light emitted by the carbon nanotubes over a wide range in the near-infrared.”

Original publication:
A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil and M. C. Gather: Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications 7, 13078 (published online 10 October 2016), doi: 10.1038/ncomms13078

Contact:
Prof. Dr Jana Zaumseil
Institute for Physical Chemistry
Phone +49 6221 54-5065
zaumseil@uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.pci.uni-heidelberg.de/apc/zaumseil/index.html
https://gatherlab.wp.st-andrews.ac.uk

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>