Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech-Led Team of Astronomers Finds 18 New Planets

05.12.2011
Discovery is the largest collection of confirmed planets around stars more massive than the sun

Discoveries of new planets just keep coming and coming. Take, for instance, the 18 recently found by a team of astronomers led by scientists at the California Institute of Technology (Caltech).


The twin telescopes at Keck Observatory in Hawaii. The astronomers used Keck to discover 18 new Jupiter-like planets orbiting massive stars.
[Credit: Rick Peterson/ W.M. Keck Observatory]

"It's the largest single announcement of planets in orbit around stars more massive than the sun, aside from the discoveries made by the Kepler mission," says John Johnson, assistant professor of astronomy at Caltech and the first author on the team's paper, which was published in the December issue of The Astrophysical Journal Supplement Series. The Kepler mission is a space telescope that has so far identified more than 1,200 possible planets, though the majority of those have not yet been confirmed.

Using the Keck Observatory in Hawaii—with follow-up observations using the McDonald and Fairborn Observatories in Texas and Arizona, respectively—the researchers surveyed about 300 stars. They focused on those dubbed "retired" A-type stars that are more than one and a half times more massive than the sun. These stars are just past the main stage of their life—hence, "retired"—and are now puffing up into what's called a subgiant star.

To look for planets, the astronomers searched for stars of this type that wobble, which could be caused by the gravitational tug of an orbiting planet. By searching the wobbly stars’ spectra for Doppler shifts—the lengthening and contracting of wavelengths due to motion away from and toward the observer—the team found 18 planets with masses similar to Jupiter's.

This new bounty marks a 50 percent increase in the number of known planets orbiting massive stars and, according to Johnson, provides an invaluable population of planetary systems for understanding how planets—and our own solar system—might form. The researchers say that the findings also lend further support to the theory that planets grow from seed particles that accumulate gas and dust in a disk surrounding a newborn star.

According to this theory, tiny particles start to clump together, eventually snowballing into a planet. If this is the true sequence of events, the characteristics of the resulting planetary system—such as the number and size of the planets, or their orbital shapes—will depend on the mass of the star. For instance, a more massive star would mean a bigger disk, which in turn would mean more material to produce a greater number of giant planets.

In another theory, planets form when large amounts of gas and dust in the disk spontaneously collapse into big, dense clumps that then become planets. But in this picture, it turns out that the mass of the star doesn't affect the kinds of planets that are produced.

So far, as the number of discovered planets has grown, astronomers are finding that stellar mass does seem to be important in determining the prevalence of giant planets. The newly discovered planets further support this pattern—and are therefore consistent with the first theory, the one stating that planets are born from seed particles.

"It's nice to see all these converging lines of evidence pointing toward one class of formation mechanisms," Johnson says.

There's another interesting twist, he adds: "Not only do we find Jupiter-like planets more frequently around massive stars, but we find them in wider orbits." If you took a sample of 18 planets around sunlike stars, he explains, half of them would orbit close to their stars. But in the cases of the new planets, all are farther away, at least 0.7 astronomical units from their stars. (One astronomical unit, or AU, is the distance from Earth to the sun.)

In systems with sunlike stars, gas giants like Jupiter acquire close orbits when they migrate toward their stars. According to theories of planet formation, gas giants could only have formed far from their stars, where it's cold enough for their constituent gases and ices to exist. So for gas giants to orbit nearer to their stars, certain gravitational interactions have to take place to pull these planets in. Then, some other mechanism—perhaps the star's magnetic field—has to kick in to stop them from spiraling into a fiery death.

The question, Johnson says, is why this doesn't seem to happen with so-called hot Jupiters orbiting massive stars, and whether that dearth is due to nature or nurture. In the nature explanation, Jupiter-like planets that orbit massive stars just wouldn't ever migrate inward. In the nurture interpretation, the planets would move in, but there would be nothing to prevent them from plunging into their stars. Or perhaps the stars evolve and swell up, consuming their planets. Which is the case? According to Johnson, subgiants like the A stars they were looking at in this paper simply don't expand enough to gobble up hot Jupiters. So unless A stars have some unique characteristic that would prevent them from stopping migrating planets—such as a lack of a magnetic field early in their lives—it looks like the nature explanation is the more plausible one.

The new batch of planets have yet another interesting pattern: their orbits are mainly circular, while planets around sunlike stars span a wide range of circular to elliptical paths. Johnson says he's now trying to find an explanation.

For Johnson, these discoveries have been a long time coming. This latest find, for instance, comes from an astronomical survey that he started while a graduate student; because these planets have wide orbits, they can take a couple of years to make a single revolution, meaning that it can also take quite a few years before their stars' periodic wobbles become apparent to an observer. Now, the discoveries are finally coming in. "I liken it to a garden—you plant the seeds and put a lot of work into it," he says. "Then, a decade in, your garden is big and flourishing. That's where I am right now. My garden is full of these big, bright, juicy tomatoes—these Jupiter-sized planets."

The other authors on the The Astrophysical Journal Supplement Series paper, "Retired A stars and their companions VII. Eighteen new Jovian planets," include former Caltech undergraduate Christian Clanton, who graduated in 2010; Caltech postdoctoral scholar Justin Crepp; and nine others from the Institute for Astronomy at the University of Hawaii; the University of California, Berkeley; the Center of Excellence in Information Systems at Tennessee State University; the McDonald Observatory at the University of Texas, Austin; and the Pennsylvania State University. The research was supported by the National Science Foundation and NASA.

Written by Marcus Woo
Deborah Williams-Hedges
626-395-3227
debwms@caltech.edu

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Physics and Astronomy:

nachricht MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses
22.07.2019 | Universität Augsburg

nachricht Bridging the nanoscale gap: A deep look inside atomic switches
22.07.2019 | Tokyo Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>