Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculations show Saturn's rings may be more massive, older

23.09.2008
Saturn’s rings may be more massive than previously thought, and potentially much older, according to calculations that simulate colliding particles in Saturn’s rings and their erosion by meteorites.

These results support the possibility that Saturn’s rings formed billions of years ago, perhaps at the time when giant impacts excavated the great basins on the Moon. The findings also suggest that giant exoplanets may also commonly have rings.

Dr Larry Esposito, Principal Investigator of Cassini’s UVIS instrument, will be presenting the results at the European Planetary Science Congress in Münster on Tuesday 23rd September.

“Both Cassini observations and theoretical calculations can allow the rings of Saturn to be billions of years old. This means we humans are not just lucky to see rings around Saturn. This would lead us to expect massive rings also to surround giant planets circling other stars,” said Dr Esposito.

Esposito’s colleagues at the University of Colorado, Glen Stewart and Stuart Robbins, have computed the gravitational attraction and collisions between more than 100,000 particles, representing a sample of those in Saturn’s rings. They followed the orbit and history of each individual particle, and calculate the amount of starlight that would pass through the ring. These results have been compared to Cassini observations of starlight blocked by the rings, which has traditionally been used to estimate the total amount of material in the ring system. Esposito used this method in 1983 to estimate that rings of Saturn contain as much material as Saturn’s small moon Mimas, which is about 250 miles across. The new simulations show Saturn’s ring particles aggregate into clumps, which would lead to the previous estimate being low by a factor of 3 or more.

Calculations by Esposito and his student Joshua Elliott show that meteorites slowly grind and shatter the particles in the ring. Gradually, a layer of dust and fragments builds up and covers each particle. This layer includes both ice (from the particle) and meteoritic dust. As time passes, the ring system is more polluted and darkened by meteoritic dust.

Because the rings appear so clean and bright, it was argued that the rings of Saturn were much younger than Saturn, which is some 4.5 billion years old. It was calculated from Voyager measurements that the rings are only about 100 million years old, approximately as ancient as when dinosaurs inhabited the Earth. The new calculations show that if the rings are more massive, they appear less polluted, and thus could be proportionately older. Recycling of ring material extends their lifetime and reduces the expected darkening.

One problem with this proposal for more massive and ancient rings is that the Pioneer 11 space mission to Saturn in 1979 measured the ring mass indirectly by observing charged particles created by cosmic rays bombarding the rings.

“Those mass estimates were similar to the ones from Voyager star occultations, apparently confirming the previous low mass value. However, we now recognize that the charged particles are double-valued. That means they could arise from either a small or large mass. We now see that the larger mass value could be consistent with the underestimates due to ring clumpiness,” said Dr Esposito.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>