Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterfly Proboscis to Sip Cells

24.11.2009
A butterfly’s proboscis looks like a straw -- long, slender, and used for sipping -- but it works more like a paper towel, according to Konstantin Kornev of Clemson University. He hopes to borrow the tricks of this piece of insect anatomy to make small probes that can sample the fluid inside of cells.

Kornev will present his work next week at the 62nd Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics will take place from November 22-24 at the Minneapolis Convention Center.

At the scales at which a butterfly or moth lives, liquid is so thick that it is able to form fibers. The insects' liquid food -- drops of water, animal tears, and the juice inside decomposed fruit -- spans nearly three orders of magnitude in viscosity. Pumping liquid through its feeding tube would require an enormous amount of pressure.

“No pump would support that kind of pressure,” says Kornev. “The liquid would boil spontaneously.”

Instead of pumping, Kornev’s findings suggest that butterflies draw liquid upwards using capillary action -- the same force that pulls liquid across a paper towel. The proboscis resembles a rolled-up paper towel, with tiny grooves that pull the liquid upwards along the edges, carrying along the bead of liquid in the middle of the tube. This process is not nearly as affected by viscosity as pumping.

Kornev has been recently awarded an NSF grant to develop artificial probes made of nanofibers that use a similar principal to draw out the viscous liquid inside of cells and examine their contents.

The presentation, "Butterfly proboscis as a biomicrofluidic system" by Konstantin Kornev et al of Clemson University is at 12:01 p.m. on Sunday, November 22, 2009.

Abstract: http://meetings.aps.org/Meeting/DFD09/Event/110814

MORE MEETING INFORMATION
The 62nd Annual DFD Meeting will be held at the Minneapolis Convention Center in downtown Minneapolis. All meeting information, including directions to the Convention Center is at: http://www.dfd2009.umn.edu/
PRESS REGISTRATION
Credentialed full-time journalist and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091).
USEFUL LINKS
Main meeting Web site: http://meetings.aps.org/Meeting/DFD09/Content/1629
Searchable form: http://meetings.aps.org/Meeting/DFD09/SearchAbstract
Local Conference Meeting Website: http://www.dfd2009.umn.edu/
PDF of Meeting Abstracts: http://flux.aps.org/meetings/YR09/DFD09/all_DFD09.pdf
Division of Fluid Dynamics page: http://www.aps.org/units/dfd/
Virtual Press Room: SEE BELOW
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room will contain tips on dozens of stories as well as stunning graphics and lay-language papers detailing some of the most interesting results at the meeting. Lay-language papers are roughly 500 word summaries written for a general audience by the authors of individual presentations with accompanying graphics and multimedia files. The Virtual Press Room will serve as starting points for journalists who are interested in covering the meeting but cannot attend in person. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Currently, the Division of Fluid Dynamics Virtual Press Room contains information related to the 2008 meeting. In mid-November, the Virtual Press Room will be updated for this year's meeting, and another news release will be sent out at that time.

ONSITE WORKSPACE FOR REPORTERS
A reserved workspace with wireless internet connections will be available for use by reporters. It will be located in the meeting exhibition hall (Ballroom AB) at the Minneapolis Convention Center on Sunday and Monday from 8:00 a.m. to 5:00 p.m. and on Tuesday from 8:00 a.m. to noon. Press announcements and other news will be available in the Virtual Press Room.
GALLERY OF FLUID MOTION
Every year, the APS Division of Fluid Dynamics hosts posters and videos that show stunning images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2010, and will appear in the annual Gallery of Fluid Motion article in the September 2010 issue of the journal Physics of Fluids.

This year, selected entries from the 27th Annual Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

ABOUT THE APS DIVISION OF FLUID DYNAMICS
The Division of Fluid Dynamics of the American Physical Society exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org
http://www.aps.org/units/dfd/

More articles from Physics and Astronomy:

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>