Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BU researcher plays key role in discovery of new type of neutrino oscillation

16.06.2011
Prof. Edward Kearns among designers of the T2K Experiment at Japan's J-PARC facility

The international T2K collaboration announced today that they have observed an indication of a new type of neutrino transformation or oscillation from a muon neutrino to an electron neutrino. Boston University Professor of Physics Edward Kearns is among the team of researchers responsible for this discovery.

Evidence of this new type of neutrino oscillation may lead the way to new studies of a matter/ anti-matter asymmetry called charge-parity (CP) violation. This phenomenon has been observed in quarks (for which Nobel prizes were awarded in 1980 and 2008), but never in neutrinos. CP violation in the early universe may be the reason that the observable universe today is dominated by matter and no significant anti-matter. If the T2K result does indicate this third oscillation, then a search for CP violation in neutrinos will be a major scientific quest in the coming years.

"Even though we have studied neutrino oscillations for years, there is still a great thrill in seeing these six events. The neutrino beam technique that we use is working beautifully and the interpretation is simple and direct. I can hardly wait to collect more data. It has been a privilege for all of us at Boston University to participate in this series of experiments in Japan, and we greatly appreciate the efforts at J-PARC and KEK to restart the T2K beam," says Kearns.

Neutrinos come in three types, or "flavors"; electron, muon, and tau. In the T2K experiment in Japan, a muon neutrino beam was produced in the Japan Proton Accelerator Research Complex, called J-PARC, located in Tokai village, Ibaraki prefecture, on the east coast of Japan, and was aimed at the gigantic Super-Kamiokande underground detector in Kamioka, near the west coast of Japan, 295 km (185 miles) away from Tokai. An analysis of the detected neutrino-induced events in the Super-Kamiokande detector indicates that a very small number of muon neutrinos traveling from Tokai to Kamioka (T2K) transformed themselves into electron neutrinos.

Further steps towards this goal will continue to require global scientific collaborations, like T2K, to overcome the significant technical challenges in this search. The T2K experiment utilizes the J-PARC complex that accelerates protons onto a target to produce an intense secondary particle beam that is focused by special magnets called neutrino horns. The focused particle beam decays into a beam of neutrinos, which is monitored by a neutrino detector 280 meters from the target. This beam of neutrinos travels 295 km underground to be detected in the Super-Kamiokande detector.

The work of the T2K experiment is located in Japan and primarily supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology. However, the experiment was constructed and is operated by an international collaboration, which consists of about 500 physicists from 59 institutions in 12 countries [Japan, US, UK, Italy, Canada, Korea, Switzerland, Spain, Germany, France, Poland, and Russia]. The data collected by the experiment is also analyzed by the collaboration. The US T2K collaborating team of approximately 70 members [Boston University, Brookhaven National Lab, UC Irvine, University of Colorado, Colorado State University, Duke University, Louisiana State University, Stony Brook University, University of Pittsburgh, University of Rochester, and University of Washington (Seattle)] is funded by the US Department of Energy, Office of Science. The US groups have built superconducting corrector magnets, proton beam monitor electronics, the second neutrino horn and a GPS time synchronization system for the T2K neutrino beamline; and a pi-zero detector and a side muon range detector (partial detector) in the T2K near detector complex.

They are also part of the team that built, upgraded and operates the Super-Kamiokande detector.

The March 2011 earthquake in eastern Japan caused damage to the accelerator complex at JPARC, and the data-taking run of the T2K experiment was abruptly discontinued. Fortunately, however, no scientists working on T2K or technical staff supporting their work were injured in the earthquake or its aftermath. The T2K experiment will be ready to take data when J-PARC resumes its operation, which is planned to occur at the end of 2011.

More details on this measurement have been provided in a press report at http://jnusrv01.kek.jp/public/t2k/ and attached to this document.

Media Contact:

Prof. Edward Kearns, Boston University (Boston, MA), kearns@bu.edu, Phone: 617-353-3425

For more details, visit http://physics.bu.edu/sites/neutrino/?p=97

About the Boston University Department of Physics — The mission of the Physics Department at Boston University is to provide excellence in teaching physics and advancement of knowledge through research and scholarship. The Department's strengths are in experimental and theoretical condensed matter physics, elementary particle physics and biological physics. In elementary particle experiment, BU physicists host major experimental efforts with the DØ experiment at Fermilab; the Super-K neutrino experiment in Kamioka, Japan; two major detector efforts at the LHC at CERN and the MuLan experiment at the Paul Scherrer Institute, both in Switzerland. The BU Department of Physics ranks in the top 10 in private universities in statistical measures of the number of refereed papers, the number of citations per year, and the number of citations per paper.

About Boston University — Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU contains 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

Edward Kearns | EurekAlert!
Further information:
http://www.bu.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>