Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brilliant light source for X-ray microscopy permits three-dimensional imaging of biological cells

12.12.2008
The Fraunhofer Institute for Laser Technology ILT in Aachen has developed a powerful light source for compact X-ray microscopes that will allow biological cells to be studied in high resolution. Using a technique similar to that of medical tomography, it is now possible to obtain layered three-dimensional images of biological cells or even semiconductor devices.

The task of analyzing the internal structure of biological cells is a relatively complex affair. When using an electron microscope, the whole cells first have to be fixed, followed by the time-consuming task of preparing the individual slices. The surface of the slices can then be analyzed at high resolution, one slice at a time.


Image of a diatom (silica algae) taken using the X-ray microscope developed by the Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

The procedure is much less laborious when using an X-ray microscope. Immediately after cryo-fixing of the whole cells, it is possible to obtain 3-dimensional images with a resolution of 20 nanometers (at current standards). The technique is rather similar to that of medical tomography (CAT scanning). X-ray microscopes can also be used in semiconductor electronics to examine current-carrying circuits at high resolution. This allows defects to be detected and visualized in working electronic devices.

To achieve the comparatively high resolution of 20 nanometers that distinguishes X-ray microscopy from basic light microscopy, a short-wavelength source in the soft X-ray range is required. Furthermore, the appropriate short exposure times call for the presence of a high photon flux. To date, the usual way of generating the necessary photon flow has involved the use of an electron storage ring. Such facilities are only available in a limited number of major research centers, and can only be used on-site, which makes it difficult for many users to take advantage of them.

The Fraunhofer Institute for Laser Technology has now developed a compact, integrated light source/collector lens system that enables powerful X-ray microscopes to be built on a laboratory scale. The volume of the resulting X-ray microscope does not exceed 2 m3. This permits it to be installed wherever it is needed.

The new X-ray microscope is capable of operating with exposure times in the single-digit second range for thin samples of less than 1 micrometer, or several tens of seconds for larger biological samples with a thickness of a few micrometers. Dr. Klaus Bergmann, who leads the Fraunhofer ILT project team, is certain that, "we will be able to bring the exposure time down to below 10 seconds for the larger samples too, by optimizing the design of the condenser mirror."

A hollow-cathode-triggered pinch plasma is employed as the light source. The nitrogen working gas is repeatedly ionized in a pulsed high-current discharge, and briefly heated to a temperature of several hundred thousand degrees Celsius. Part of the coupled energy is emitted in the form of characteristic X-rays at a wavelength of 2.88 nanometers. The source can produce 4 x 10exp13 photons/(sr x pulse) at the 1s2-1s2p transitions of helium-like nitrogen. Using a suitably adapted collector optic and a pulse repetition rate of 1000 Hz, a photon flux of 1 x 10exp7 photons/(µmexp2 x s) can be generated on the sample. At this density, microscopic images of thick aqueous samples can be obtained with an exposure time of approximately ten seconds.

A first demonstrator model of the microscope has been built in collaboration with the Institute for X-Ray-Optics at the University of Applied Sciences in Koblenz and the company ACCEL Instruments GmbH in Bergisch-Gladbach, as part of a BMBF-funded collaborative research project. Next year's objective is to produce a light source for a commercial X-ray microscope suitable for tomography applications by integrating an appropriately adapted collector optic and further improving the brilliance.

CONTACTS at the Fraunhofer ILT:

If you have any questions about the X-ray microscope, please contact our experts:
Dr. rer. nat. Klaus Bergmann
Plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-302
Fax +49 (0)241/8906-121
klaus.bergmann@ilt.fraunhofer.de
Dr. Willi Neff
Head of the plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-142
Fax +49 (0)241/8906-121
willi.neff@ilt.fraunhofer.de
If you have questions concerning other subjects and wish to be put in touch with the relevant expert, please contact:
Dipl.-Phys. Axel Bauer
Head of Marketing and Communications
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-194
Fax +49 (0)241/8906-121
axel.bauer@ilt.fraunhofer.de

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>