Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightest galaxies tend to cluster in busiest parts of universe, study finds

21.05.2010
Early data from largest astronomical telescope analyzed by UCI team

For more than a decade, astronomers have been puzzled by bright galaxies in the distant universe that appear to be forming stars at phenomenal rates. What prompted the prolific star creation, they wondered. And what kind of spatial environment did these galaxies inhabit?

Now, using a super-sensitive camera/spectrometer on the Herschel Space Observatory, astronomers – including a UC Irvine team led by Asantha Cooray – have mapped the skies as they appeared 10 billion years ago.

The UCI scientists discovered that these glistening galaxies preferentially occupy regions of the universe containing more dark matter and that collisions probably caused the abundant star production.

“Thanks to the superb resolution and sensitivity of the SPIRE [Spectral & Photometric Imaging Receiver] instrument on Herschel, we managed to map in detail the spatial distribution of massively star-forming galaxies in the early universe,” said Cooray, associate professor and Chancellor’s Fellow in physics & astronomy. “All indications are that these galaxies are . . . crashing, merging and possibly settling down at centers of large dark-matter halos.”

This information will enable scientists to adapt conventional theories of galaxy formation to accommodate the strange, star-filled versions.

The European Space Agency’s Herschel observatory carries the largest astronomical telescope operating in space today; it collects data at far-infrared wavelengths invisible to the naked eye.

One of three cameras on Herschel, SPIRE has let Cooray and colleagues survey large areas of the sky – about 60 times the size of the full moon – in the constellations of Ursa Major and Draco. The UCI team also included Alexandre Amblard, project scientist in physics & astronomy; Paolo Serra, postdoctoral fellow; and physics students Ali Khostovan and Ketron Mitchell-Wynne.

The data analyzed in this study was among the first to come from the Herschel Multi-Tiered Extragalactic Survey, the space observatory’s largest project. UCI is one of only four U.S. educational institutions involved in Herschel using the SPIRE instrument. Seb Oliver, a University of Sussex professor who leads the survey, called the findings exciting.

“It’s just the kind of thing we were hoping for from Herschel,” he said, “and was only possible because we can see so many thousands of galaxies. It will certainly give the theoreticians something to chew over.”

The study will appear in a special issue of Astronomy & Astrophysics dedicated to the first scientific results from Herschel. The project will continue to collect images over larger areas of the sky in order to build up a more complete picture of how galaxies have evolved and interacted over the past 10 billion years.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Cathy Lawhon | EurekAlert!
Further information:
http://www.uci.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>