Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brighter than 100 Billion Stars

02.03.2015

Supernova scientist Friedrich Röpke is the leader of the new research group „Physics of Stellar Objects“ at HITS and professor at Heidelberg University. He examines the high-energy processes in the death of stars using computer simulations.

Modern astronomy began with a supernova. In November 1572, Danish astronomer Tycho Brahe discovered a new star – and destroyed the idea of a sky of fixed stars. Today, we know that Brahe was observing the death of a star, which ended in a massive explosion. Friedrich Röpke aims to find out how these supernova explosions proceed.


Three-dimensional simulation of a Type Ia supernova explosion

Image: F. K. Röpke MPI for Astrophysics, Garching

The astrophysicist is now leader of the new research group „Physics of Stellar Objects“ (PSO) at Heidelberg Institute for Theoretical Studies (HITS). As of March 1, 2015, he has been appointed professor for Theoretical Astrophysics at Heidelberg University. His workplace is HITS. This joint appointment is a perfect proof for the close cooperation between the two institutes. With Friedrich Röpke and Volker Springel, there now are two HITS astrophysicists who are also professors at Heidelberg University.

“The new group is another important component of our concept, “ says Klaus Tschira who founded the HITS in 2010 as a non-profit research institute. “Research on stellar astrophysics, like Friedrich Röpke does, is a perfect complement of the work of Volker Springel’s group on large-scale processes like galaxy formation.“

Friedrich Röpke (40) studied Physics at the University of Jena and the University of Virginia, Charlottesville/USA, and received his PhD in 2003 from the Technische Universität München. In the following years, he worked as a postdoc at the Max-Planck-Institute for Astrophysics (MPA) in Garching and at the University of California, Santa Cruz/USA. In 2008, Friedrich Röpke habilitated at the TU München and also became leader of an Emmy Noether research group at MPA.

Three years later, he got appointed professor for Astrophysics at the University of Würzburg. In 2010, the researcher was awarded the „ARCHES Award“ by the German Federal Ministry for Education and Research together with Prof. Avishay Gal-Yam from the Weizmann Institute, Rehovot/Israel. The award honors young scientists whose work shows great potential to have noticeable impact on their respective fields of research.

Friedrich Röpke studies Type Ia supernovae. Observation of these cosmic explosions allows astronomers to determine distances in space. In 2011, the Nobel Prize in Physics was awarded to researchers who proved the accelerated expansion of the Universe with supernovae. The PSO group collaborates closely with one of the laureates from 2011, Brian Schmidt (Australian National University, Canberra) in a program supported by the German Academic Exchange Service DAAD.

Friedrich Röpke’s research aims to understand exactly what happens when stars die. Together with other scientists, he used computer simulations to show that some highly-luminous supernovae are the result of two compact stars, so-called “white dwarfs", merging together. He also investigates alternatives by modeling the explosion of a white dwarf when it reaches its maximum stable mass (the so-called Chandrasekhar limit), using highly complex simulations on supercomputers. White dwarfs are only about the size of the Earth and are extremely dense. When they explode as supernova, they shine brighter than the whole galaxy. „Our detailed simulations helped us to predict data that closely reproduce actual telescope observations of Type Ia supernovae, “ explains the astrophysicist.

“Modelling of supernova explosions is, however, just one part of our research at HITS,” says Friedrich Röpke. “We also strive for a better understanding of how stars evolve and how the elements that make up our world are formed within them.” Classical astrophysics follows stellar evolution based on very simplifying assumptions. „To improve the predictive power of the models, we have to describe the physical processes taking place within stars in a dynamic way,“ says the astrophysicist. He and his group have developed a new computer code that – combined with the rapidly increasing capacities of supercomputers – opens new perspectives for the modelling of stars.

In contrast to what we are used to from our solar system, most stars in the Universe exist as part of multiple star systems. The interaction between those stars greatly affects their evolution but the involved physical processes are poorly understood until today. The two astrophysics groups at HITS are cooperating on new computer simulations to bring some light into the darkness.

Weitere Informationen:

http://www.h-its.org/en-institutsnews/brighter-than-100-billion-stars/ HITS press release
http://www.h-its.org/en/research/physics-of-stellar-objects/ Group webpages

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Gravitational waves from a merged hyper-massive neutron star
15.11.2018 | Royal Astronomical Society

nachricht Discovery of a cool super-Earth
15.11.2018 | Universität Hamburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Putting food-safety detection in the hands of consumers

15.11.2018 | Information Technology

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018 | Life Sciences

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>