Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brief Reflections from a Plasma Mirror

05.12.2018

Physicists at the Max Planck Institute of Quantum Optics, the Ludwig-Maximilians University in Munich and Umeå University have, for the first time, made use of plasmas consisting of relativistic electrons to generate isolated and highly intense attosecond laser pulses.

When a dense sheet of electrons is accelerated to almost the speed of light, it acts as a reflective surface. Such a ‘plasma mirror’ can be used to manipulate light.


With extremely intense laser pulses, the international team of laser physicists generates fast electrons, which in turn emit attosecond light flashes as plasma levels.

Thorsten Naeserele

Now an international team of physicists from the Max Planck Institute of Quantum Optics, LMU Munich, and Umeå University in Sweden have characterized this plasma-mirror effect in detail, and exploited it to generate isolated, high-intensity attosecond light flashes. An attosecond lasts for a billionth of a billionth of a second.

The interaction between extremely powerful laser pulses and matter has opened up entirely new approaches to the generation of ultrashort light flashes lasting for only a few hundred attoseconds.

These extraordinarily brief pulses can in turn be used to probe the dynamics of ultrafast physical phenomena at sub-atomic scales.

The standard method used to create attosecond pulses is based on the interaction of near-infrared laser light with the electrons in atoms of noble gases such as neon or argon.

Now researchers at the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics in Garching and Munich’s Ludwig Maximilians University (LMU), in collaboration with colleagues at Umeå University, have successfully implemented a new strategy for the generation of isolated attosecond light pulses.

In the first step, extremely powerful femtosecond laser pulses are allowed to interact with glass. The laser light vaporizes the glass surface, ionizing its constituent atoms and accelerating the liberated electrons to velocities equivalent to an appreciable fraction of the speed of light.

The resulting high-density plasma made up of rapidly moving electrons, which propagates in the same direction as the pulsed laser light, acts like a mirror. Once the electrons have attained velocities that approach the speed of light they become relativistic, and begin to oscillate in response to the laser field.

The ensuing periodic deformation of the plasma mirror interacts with the reflected light wave to give rise to isolated attosecond pulses. These pulses have an estimated duration of approximately 200 as and wave-lengths in the extreme ultraviolet region of the spectrum (20-30 nanometers, 40-60 eV).

In contrast to attosecond pulses generated with longer laser pulses, those produced by the plasma-mirror effect and laser pulses that have a duration of few optical cycles can be precisely controlled with the waveform.

This also allowed the researchers to observe the time course of the generation process, i.e. the oscillation of the plasma mirror. Importantly, these pulses are much more intense, i.e. contain far more photons, than those obtainable with the standard procedure.

The increased intensity makes it possible to carry out still more precise measurements of the behaviour of subatomic particles in real time. Attosecond light pulses are primarily used to map electron motions, and thus provide insights into the dynamics of fundamental processes within atoms.

The higher the intensity of the attosecond light flashes, the more information can be gleaned about the motions of particles within matter.

With the practical demonstration of the plasma-mirror effect to generate bright attosecond light pulses, the authors of the new study have developed a technology, which will enable physicists to probe even deeper into the mysteries of the quantum world.

Wissenschaftliche Ansprechpartner:

Prof. Laszlo Veisz
Relativistic Attosecond Physics Laboratory
Department of Physics Umea University
Linnaeus väg 24, SE-90187 Umea, Sweden
Phone: +46 (0)90 786 66 62
Web: https://www.realumu.org/

Thorsten Naeser
Press Office / Laboratory for Attosecond Physics
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching near Munich
Phone: +49 (0)89 32905 124
Email: thorsten.naeser@mpq.mpg.de

Originalpublikation:

Dmitrii Kormin, Antonin Borot, Guangjin Ma, William Dallari, Boris Bergues, Márk Aladi,István B. Földes & Laszlo Veisz:
Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces
Nature Communications, 26th November 2018, 9, Article Number: 4992 (2018)
DOI: 10.1038/s41467-018-07421-5

Weitere Informationen:

http://www.mpq.mpg.de/

Jessica Gruber | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Harvesting energy from the human knee
17.07.2019 | American Institute of Physics

nachricht Neutrino-Observatorium IceCube am Südpol wird ausgebaut
17.07.2019 | Deutsches Elektronen-Synchrotron DESY

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For bacteria, the neighbors co-determine which cell dies first: The physiology of survival

17.07.2019 | Life Sciences

Harvesting energy from the human knee

17.07.2019 | Physics and Astronomy

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>