Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in spintronics

10.07.2017

It's ultra-thin, electrically conducting at the edge and highly insulating within – and all that at room temperature: Physicists from the University of Würzburg have developed a promising new material.

The material class of topological insulators is presently the focus of international solids research. These materials are electrically insulating within, because the electrons maintain strong bonds to the atoms. At their surfaces, however, they are conductive due to quantum effects.


Schematic illustration of the conducting edge channels at the boundaries of the bismuthene film. The edge channels protect the spins against scattering.

Abbildung: Maximilian Bauernfeind


Bismuthene film through the scanning tunnelling microscope. The honeycomb structure of the material (blue) is visible. A conducting edge channel (white) forms at the edge of the insulating film.

Abbildung: Felix Reis

What is more: The electron has a built-in compass needle, the spin, whose orientation is capable of transmitting information very efficiently. It is protected against scattering when moving through these surface channels. With these properties, topological insulators could make an old dream come true: direct spin-based data processing, the so-called spintronics.

Previous concepts only work in the refrigerator

Until now, however, there has been one major obstacle to using such surface channels for technical applications: "As the temperature of a topological insulator increases, all quantum effects are washed out and with them the special properties of the electrically conducting edges," Dr Jörg Schäfer explains; he is a private lecturer at the Chair of Experimental Physics 4 of the University of Würzburg.

For this reason, all known topological insulators have to be cooled to very low temperatures – usually down to minus 270 degrees Celsius – to be able to study the quantum properties of the edge channels. "Of course, such conditions are not very practicable for potential applications such as ultra-fast electronics or quantum computers," the physicist says.

A team of Würzburg physicists has now presented an entirely new concept to elegantly bypass this problem. Members of the team included Professor Ralph Claessen and private lecturer Dr Jörg Schäfer from the Chair of Experimental Physics IV and Professor Ronny Thomale, Professor Werner Hanke and Dr Gang Li from the Chair of Theoretical Physics I. The scientists have now published their results in the current issue of Science.

Targeted material design

The Würzburg breakthrough is based on a special combination of materials: an ultra-thin film consisting of a single layer of bismuth atoms deposited on a silicon carbide substrate.

What makes this combination so special? "The crystalline structure of the silicon carbide substrate causes the bismuth atoms to arrange in a honeycomb geometry when depositing the bismuth film – very similar to the structure of the 'miracle material' graphene, which is made up of carbon atoms“, Professor Ralph Claessen explains. Because of this analogy, the waver-thin film is called "bismuthene".

But it has one decisive difference compared to graphene: "Bismuthene forms a chemical bond to the substrate," Professor Ronny Thomale details. It plays a central role in the new concept to provide the material with the desired electronic properties. This is highlighted by computer-based modelling: "Whereas common bismuth is an electrically conductive metal, the honeycomb monolayer remains a distinct insulator, even at room temperature and far above," the physicist adds. To create this much desired initial situation artificially, the heavy bismuth atoms are ingeniously combined with the equally insulating silicon-carbide substrate.

Electron motorway on the edge

The electronic conduction channels come into play at the edge of a piece of bismuthene. This is where the metallic edge channels are located which are to be used for the data processing of the future. This has not only been concluded theoretically by the Würzburg research team, it has also been proven in experiments using microscopic techniques.

In order to harness the edge channels for electronic components, it is however crucial that there is no short-circuit through the inside of the topological material or through the substrate. "Previous topological insulators required extreme cooling to assure this," Jörg Schäfer explains. The new bismuthene concept makes this effort redundant: The distinct insulating behaviour of the film and the substrate eliminate any disturbing short-circuits.

The Würzburg scientists believe that it is this step of making the material work at room temperature which will render the discovery interesting for potential applications under realistic conditions. "Such conduction channels are 'protected topologically'. This means they can be used to transmit information virtually without loss," Ralph Claessen says. This approach makes data transmission with few electron spins conceivable, the so-called spintronics. Therefore, the Würzburg team expects great advances for efficient information technology.

Result of collaborative research

This breakthrough in topological physics is a direct result of the close cooperation of the Würzburg physicists in the Collaborative Research Center SFB1170 "ToCoTronics" (Topological and Correlated Electronics at Surfaces and Interfaces) funded by the DFG.

Bismuthene on a SiC Substrate: A Candidate for a High-Temperature Quantum Spin Hall Material. F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen. Science, First Release online publication (29 June 2017), doi: 10.1126/science.aai8142

Contact

Prof. Dr. Ralph Claessen, Chair of Experimental Physics IV
T: +49 931 31-85732, claessen@physik.uni-wuerzburg.de

PD Dr. Jörg Schäfer, Chair of Experimental Physics IV
T: +49 931 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Prof. Dr. Ronny Thomale, Chair of Theoretical Physics I
T: +49 931 31-86225, ronny.thomale@physik.uni-wuerzburg.de

Weitere Informationen:

https://www.physik.uni-wuerzburg.de/sfb1170/startseite/ Homepage of the Collaborative Research Center

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>