Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in quantum physics

02.10.2018

Reaction of a quantum fluid to photoexcitation of dissolved particles observed for the first time

In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on processes in molecules and clusters which take place on time scales of picoseconds (10^-12 seconds) and femtoseconds (10^ -15 seconds).


Markus Koch (2nd in the left row), Wolfgang Ernst (4th in the left row), Bernhard Thaler (1st in the right row) and the team at the Institute of Experimental Physics of TU Graz achieved a breakthrough in the research of completely novel molecular systems.

Credit: Lunghammer - TU Graz

Now Koch and his team have achieved a breakthrough in the research on completely novel molecular systems. By means of femtosecond spectroscopy, which allows ultrafast processes to be measured in a time-resolved way, the Graz researchers were able to exactly describe the processes in an approximately five-nanometer sized superfluid helium droplet after photoexcitation of an atom inside.

This milestone in basic research has impact on the experimental investigation of atoms and molecules. Markus Koch explains the pioneering approach: "Our institute, headed by Wolfgang Ernst, has a long tradition in the production and investigation of novel systems and clusters in a nanometer-sized quantum fluid. We are now combining this expertise with femtosecond spectroscopy.

This allows us to observe and measure processes, which are triggered by photoexcitation in real time and to describe their dynamics. We are the first research group who has observed this." The results of the research have just been published in Nature Communications.

A technique rich in superlatives

To investigate this fundamental process which takes place on an ultrashort timescale of only one trillionth of a second, the team led by Markus Koch applies femtosecond spectroscopy. The femtosecond pump-probe method provides snapshots of atomic movements. For the experiment, a single indium atom is introduced into a tiny helium droplet.

The indium atom is subjected to pump excitation by means of a short pulse and subsequently transfers energy to the surrounding helium, which starts to oscillate collectively. A time-delayed second flash of light then probes the system in order to observe the dynamics. Bernhard Thaler, a PhD student at the Institute of Experimental Physics who is substantially involved in the pathbreaking research, explains what happens:

"When we photoexcite the atom inside the helium droplet, its electron shell expands and the enveloping bubble increases within a picosecond after stimulation. We further observe that the indium atom is ejected from the droplet after about 50 to 60 picoseconds. We were able to obtain this mechanistic insight for the first time with the femtosecond experiment."

A process characterised by superlatives: ultrafast movements on femtosecond timescales inside nanometer-sized helium droplets (which is less than one thousandth of the diameter of a hair), at an ultralow temperature of 0.4 Kelvin above absolute zero. The team was able to illustrate this process very clearly using simulation software.

From proof of concept to application in complex molecules

With this research success, Markus Koch and his team managed to prove impressively that the ultrafast, electronic and nuclear dynamics of particles inside superfluid helium droplets can be observed and simulated. Following this research success, Markus Koch is already looking into the future. "Today, we are still experimenting with single atoms," says Koch, "but after this proof of concept we are moving in giant steps towards the application of helium nanodroplets to investigate dynamics in previously unknown or fragile molecular systems of technological or biological relevance."

###

The research of Markus Koch and his team was funded as a Stand-Alone Project by the Austrian Science Fund (FWF).

This research project is anchored in the Field of Expertise „Advanced Materials Science", one of five strategic research FoE of TU Graz. Participating researchers are members of NAWI Graz - Natural Sciences.

Media Contact

Barbara Gigler
barbara.gigler@tugraz.at
43-664-608-736-006

http://www.tugraz.at 

Barbara Gigler | EurekAlert!
Further information:
https://www.tugraz.at/en/tu-graz/services/news-stories/media-service/singleview/article/durchbruch-in-der-quantenphysik-reaktion-von-quantenfluid-auf-fotoanregung-geloester-teilchen-erstma/
http://dx.doi.org/10.1038/s41467-018-06413-9

More articles from Physics and Astronomy:

nachricht Ultrafast particle interactions could help make quantum information devices feasible
17.10.2019 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Quantum physics: Ménage à trois photon-style
16.10.2019 | Université de Genève

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Chains of atoms move at lightning speed inside metals

17.10.2019 | Materials Sciences

Stretchable circuits: New process simplifies production of functional prototypes

17.10.2019 | Materials Sciences

Scientists discover method to create and trap trions at room temperature

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>