Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking symmetry in the strong force

14.04.2009
Supercomputers allow researchers to calculate symmetry violations in the strong interaction that holds atoms together

An international research team has reconciled two theories that explain the properties of the pion. The work is important because this subatomic particle plays a key role in the strong interaction—the fundamental force that holds atomic nuclei together.

The pion consists of a quark and an anti-quark, meaning it is classified as a hadron alongside protons and neutrons—but it has very different properties.

“One puzzle was that the pion is much lighter than other hadrons,” says scientist Sinya Aoki, based at the University of Tsukuba and the RIKEN BNL Center in New York.

The unexpectedly light pion mass was first explained by Yoichiro Nambu, who received the Nobel Prize for Physics in 2008. He realized that the strong interaction usually obeys a rule called ‘chiral symmetry’, but in a vacuum this rule can be broken.

“A quark has spin, or self-rotation, which can be in a left-handed or right-handed direction,” Aoki explains. “The chiral symmetry means that left-handed quarks and right-handed quarks never mix with each other. If this chiral symmetry is spontaneously broken, a pion appears to be massless. This, however, is not true if the quarks have mass.”

In fact, pions have a tiny mass due to the small but non-zero quark mass, irrespective of the large energy scale of the strong interaction.

Effects of quark mass in the presence of spontaneous chiral symmetry breaking have been illustrated using a tool called chiral perturbation theory. However it is important to show that the symmetry breaking can occur in the fundamental theory of the strong interaction, called quantum chromodynamics (QCD), which governs the behavior of quarks and gluons.

Until now it has been difficult for QCD to verify the small pion mass owing to problems such as ‘sea quarks’—virtual quark-antiquark pairs that pop in and out of existence in the gluon field.

In their latest work1, Aoki and co-workers used powerful supercomputers (Fig. 1) at the High Energy Accelerator Research Organization (KEK) in Tsukuba to run QCD numerically on a lattice. They calculated exactly how the mass and decay properties of a pion depend on the quark mass.

They have shown for the first time that QCD provides the same results as chiral perturbation theory, if one assumes a small enough quark mass. Aoki is delighted with the success.

“Our results not only show that the lattice QCD and the chiral perturbation theory agree, but also prove that Nambu's chiral symmetry breaking indeed occurs in QCD.”

Reference

1. Noaki, J., Aoki, S., Chiu, T.W., Fukaya, H., Hashimoto, S., Hsieh, T.H., Kaneko, T., Matsufuru, H., Onogi, T., Shintani, E. & Yamada, N. Convergence of the chiral expansion in two-flavor lattice QCD. Physical Review Letters 101, 202004 (2008).

The corresponding author for this highlight is based at the RIKEN Theory Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/669/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>