Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes turn up the heat for the Universe

15.05.2012
HITS astrophysicists discover a new heating source in cosmological structure formation

So far, astrophysicists thought that super-massive black holes can only influence their immediate surroundings. A collaboration of scientists at the Heidelberg Institute for Theoretical Studies (HITS) and in Canada and the US now discovered that diffuse gas in the universe can absorb luminous gamma-ray emission from black holes, heating it up strongly.


A supermassive black hole is surrounded by a dust ring (torus). The collapse of gas onto the black hole launches an energetic jet of matter and radiation, which is transported over cosmological distances. A jet that is pointing into our direction is called a "blazar". copyright: ESA/NASA, the AVO project and Paolo Padovani


Simulated line forest of a quasar spectrum. The blue spectrum represents a universe without blazar heating, the red one a universe with blazar heating. It is evident that the additional heating process ionizes neutral hydrogen, implying less absorption of the UV light emitted by the quasar. Picture: HITS

This surprising result has important implications for the formation of structures in the universe. The results have just been published in "The Astrophysical Journal“ and „Monthly Notices of the Royal Astronomical Society”.

Every galaxy hosts a supermassive black hole at its center. Such black holes can emit high-energy gamma rays and are then called blazars. Whereas other radiation such as visible light and radio waves traverses the universe without problems, this is not the case for high-energy gamma rays. This particular radiation interacts with the optical light that is emitted by galaxies, transforming it into the elementary particles electrons and positrons.

Initially, these elementary particles move almost at the speed of light. But as they are slowed down by the ambient diffuse gas, their energy is converted into heat, just like in other braking processes. As a result, the surrounding gas is heated efficiently. In fact, the temperature of the gas at mean density becomes ten times higher, and in underdense regions more than one hundred times higher than previously thought.

A Journey into the Cosmic Youth

"Blazars rewrite the thermal history of the universe", emphasizes Dr. Christoph Pfrommer (HITS), one of the authors. But how can this idea be tested? In the optical spectra of quasars there is a plethora of lines, called the "line forest". The forest originates from the absorption of ultra-violet light by neutral hydrogen in the young Universe. If the gas becomes hotter, weak lines in the forest are broadened. This effect represents an excellent opportunity to measure temperatures in the early Universe, while it was still growing up.

The astrophysicists at HITS checked this newly postulated heating process for the first time with detailed supercomputer simulations of the cosmological growth of structures. Surprisingly, the lines were broadened just enough so that their properties perfectly matched those of the observed lines. "This allows us to elegantly solve a long-standing problem with the quasar data", says Dr. Ewald Puchwein, who conducted the large simulations on the supercomputer at HITS.

How Black Holes Influence the Formation of Galaxies

What are the further consequences of this new heating process? The forest of lines in the quasar spectra originates from density fluctuations in the Universe. In the course of cosmic evolution, the densest fluctuations collapse to form galaxies and galaxy clusters, as observed in the local Universe. Diffuse gas that is too hot cannot collapse. Hence, the formation of dwarf galaxies is slowed or even entirely suppressed. This could be the key to the solution of another long-standing problem in the theory of galaxy formation: why do we observe fewer dwarf galaxies in the vicinity of the Milky Way and in the underdense regions than predicted by cosmological simulations?

Prof. Volker Springel, scientific group leader at HITS, explains: "The process of blazar heating is especially exciting since this single effect is able to simultaneously solve several different puzzles in cosmological structure formation." The group plans to further improve their simulation models for a still deeper understanding of the nature of blazar heating and its implications for today's Universe.

Press contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Tel.: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
www.h-its.org
Scientific contact:
Prof. Dr. Volker Springel
Heidelberg Institute for Theoretical Studies (HITS)
Tel: +49-6221-533-241
volker.springel@h-its.org
www.h-its.org
The series of scientific articles:
The Lyman-alpha forest in a blazar-heated Universe. E. Puchwein, C. Pfrommer, V. Springel, A. E. Broderick, and P. Chang, 2012, MNRAS, in print, arXiv:1107.3837 http://arxiv.org/abs/1107.3837

The Cosmological Impact of Luminous TeV Blazars III: Implications for Galaxy Clusters and the Formation of Dwarf Galaxies. C. Pfrommer, P. Chang, and A. E. Broderick, 2012, ApJ, in print, arXiv:1106.5505 http://arxiv.org/abs/1106.5505

The Cosmological Impact of Luminous TeV Blazars II: Rewriting the Thermal History of the Intergalactic Medium. P. Chang, A. E. Broderick, and C. Pfrommer, 2012, ApJ, in print, arXiv:1106.5504 http://arxiv.org/abs/1106.5504

The Cosmological Impact of Luminous TeV Blazars I: Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. A. E. Broderick, P. Chang, and C. Pfrommer, 2012, ApJ, in print, arXiv:1106.5494 http://arxiv.org/abs/1106.5494

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/pressreleases.php?we_objectID=877

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>