Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Hole Research Lands NASA EPSCoR Grant

27.08.2008
Researchers from Arkansas land $1.4 million grant to pursue study of super-massive black holes thought to reside at the center of all galaxies.

Dr. Marc Seigar, a UALR astrophysics professor and three colleagues from the University of Arkansas at Fayetteville, have received a $1.4 million grant from the Arkansas NASA EPSCoR Office to further their study of mysterious super- massive black holes thought to reside at the centers of nearly all galaxies.

Seigar and his co-researchers – Professors Daniel Kennefick, Julia Kennefick, and Claud Lacy, all of the University of Arkansas at Fayetteville – formed a new collaboration in late 2007 to study these black holes and the role they play in galactic evolution. In June of this year, Seigar presented the groups' conclusions at the American Astronomical Society meeting in St. Louis that created a worldwide buzz among science journalists.

Operating as the Arkansas Galaxy Evolution Survey – AGES, the scientific collaborative has received a total of $1.4 million, with the Arkansas NASA EPSCoR Office funding half of that amount and the two universities providing the remainder of the funds.

Seigar at UALR will receive approximately $400,000 and the three other Fayetteville scientists will receive the remainder of the funds. Daniel Kennefick will be the grant's principal investigator.

The grant will allow the Arkansas scientists to develop a census of black holes throughout the universe as a means of understanding how galaxies and the universe itself evolved with time.

In June of this year, Seigar presented a paper to the American Astronomical Society in St. Louis outlining AGES' method of estimating the masses of super-massive black holes in galaxies that are far distant. The team's work attracted the interest of science journalists as well as National Geographic, USA Today, Science News, and BBC's Sky at Night among others.

Seigar and his research team have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy's arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

The research team will employ new techniques to estimate the masses of the super-massive black holes residing in large numbers of galaxies by exploiting a relation that they discovered between a spiral arm structure and the mass of the super-massive black hole in the center of spiral galaxies.

The technique will permit them to make use of the extensive archive of deep images provided by large telescopes, such as NASA's Hubble Space Telescope, in estimating the masses of super-massive black holes in distant galaxies.

In addition, the team will use spectroscopic techniques to estimate the mass of super-massive black holes in quasars, and other "active" galaxies, in which the super-massive black hole is surrounded by matter swirling into it.

They will also use infrared and X-ray techniques to look for evidence of binary super-massive black holes in galaxies where the birth of large numbers of hot bright stars indicates a fairly recent galactic merger.

"Such a merger seems likely to give birth to a binary super-massive black hole system at the heart of the merged galaxy, and such systems could ultimately be very strong sources of gravitational waves detectable by the proposed NASA mission to fly a gravitational wave detector in space, known as LISA," Kennefick said.

The AGES collaboration has discovered four candidate galaxies that may contain super-massive black holes binaries.

The grant they have been awarded will pay for graduate and undergraduate students at both Universities to participate in this research. In addition it will bring two postdoctoral researchers to Arkansas to work on this survey, one to UALR and the other to UA Fayetteville.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu/

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>