Bismuth provides perfect dance partners for quantum computing qubits

The discovery, published in Nature Materials, takes us a key step further to creating practical quantum computing which could tackle complex programs that would otherwise take the lifetime of the universe to finish.

The collaboration partners are based in the University of Warwick, UCL, ETH Zurich and the USA Sandia National Labs.

Information on our normal computers is stored as bits, which are either ones or zeros. Quantum bits work differently in that each quantum bit can try out being a one and a zero at the same time, which makes them much more powerful for solving certain problems.

Researchers have explored influencing the direction of spin in electrons to create those states but this approach has had its challenges.

Dr Gavin Morley from the University of Warwick's Department of Physics said: “Bismuth atoms in silicon crystals are great at working as quantum bits. Each bismuth atom has a spare electron, which has a “spin” that can be influenced by magnets.

“If we put the electron into a magnet, it lines up with the magnetic field, behaving like a compass needle.

“We can control the direction that the electron is pointing in, using microwaves. Microwaves let us flip the direction the electron is pointing in, and these “up and down” directions are what constitute the “one and zero” in our quantum bit.

“Unfortunately, our electron is constantly prone to interference from nearby atoms that are out of our control.

“And the more time we waste, the greater the chance that our poor electron will suffer from interference, making it unusable to us.”

“Now, this electron is coupled to the bismuth nucleus, which has its own spin: a smaller compass needle. Using this as an extra quantum bit and flipping it at the same time as our electron, would really help out. We can control this smaller compass needle too, but as it's smaller, it takes longer to control, and we need to use radiowaves instead of microwaves to do this.”

“The good news is that as it's slow to respond, our bismuth nucleus's smaller compass needle suffers less from interference by nearby rogue atoms than our electron's larger compass needle. Unfortunately in the time we spend controlling our bismuth nucleus, these rogue atoms interfere with our electron.”

“However we found that if we reduce the magnetic field just enough, then the electron and the nucleus become hybridized. Our new experiments at ETH Zurich show that through hybridisation, we can flip both compass needles easily using microwaves.”

Dr Morley compares it to the magnetic resonance imaging we find in hospitals.

He said: “MRI works by controlling the nuclear spins in your body.

“We have hybridized electron and nuclear spins and found that this makes it easier to control them.

“It's an easy new way to make slow and fast quantum bits work together. There are lots more challenges to face before anyone has a working computer with enough quantum bits to be useful, but with this hybridization as part of a computer's design, we are one step closer.”

The paper entitled “Quantum control of hybrid nuclear–electronic qubits” is published in Nature Materials doi: 10.1038/NMAT3499 (2012) and is by Gavin W Morley, Petra Lueders, M Hamed Mohammady, Setrak J Balian, Gabriel Aeppli, Christopher WM Kay, Wayne M Witzel, Gunnar Jeschke & Tania S Monteiro, Nature Materials doi: 10.1038/NMAT3499 (2012).

Contacts

Gavin Morley, Department of Physics, University of Warwick. gavin.morley@warwick.ac.uk tel 44-2476-150-801 or 44-7894-984-021

Anna Blackaby, University of Warwick press officer

Media Contact

Anna Blackaby EurekAlert!

More Information:

http://www.warwick.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors