Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First known binary star is discovered to be a triplet, quadruplet, quintuplet, sextuplet system

11.12.2009
Alcor, 1 half of the first known binary star system, has its own surprise star companion

In ancient times, people with exceptional vision discovered that one of the brightest stars in the Big Dipper was, in fact, two stars so close together that most people cannot distinguish them. The two stars, Alcor and Mizar, were the first binary stars—a pair of stars that orbit each other—ever known.

Modern telescopes have since found that Mizar is itself a pair of binaries, revealing what was once thought of as a single star to be four stars orbiting each other. Alcor has been sometimes considered a fifth member of the system, orbiting far away from the Mizar quadruplet.

Now, an astronomer at the University of Rochester and his colleagues have made the surprise discovery that Alcor is also actually two stars, and is apparently gravitationally bound to the Mizar system, making the whole group a sextuplet. This would make the Mizar-Alcor sextuplet the second-nearest such system known. The discovery is especially surprising because Alcor is one of the most studied stars in the sky.

"Finding that Alcor had a stellar companion was a bit of serendipity," says Eric Mamajek, assistant professor of physics and astronomy at the University of Rochester, and leader of the team that found the star. "We were trying a new method of planet hunting and instead of finding a planet orbiting Alcor, we found a star."

Mamajek says that a separate group of scientists, led by Ben Oppenheimer of the American Natural History Museum, has also just found that the Alcor companion is physically associated with the star.

That group has also recorded a rough spectrum of the star, which Mamajek says confirms his prediction that the companion is a cool and dim M-class dwarf star.

Mamajek and colleagues at the University of Arizona used the Multiple Mirror Telescope in Arizona, which has a secondary mirror capable of flexing slightly to compensate for the twinkling the Earth's atmosphere normally imparts to starlight. With the clearest images he could obtain of nearby stars, Mamajek's team used computer algorithms to remove as much glare as possible from the image of a star in the hopes of spotting a planet near the star. Planets are so much dimmer than their parent stars that spotting one is like trying to discern a firefly next to a spotlight from several miles away, says Mamajek.

Though Mamajek was unable to find any planets in the first group of stars he surveyed, he did stumble across the tiny star hidden in the glare of Alcor. Not only did Mamajek's project reveal the image of the star, but its presence was able to explain slight deviations in movement that scientists had noticed in Alcor. In addition, Mamajek estimates that the small companion star is likely a third as massive as our sun, and explains why astronomers have detected unexpectedly high levels of X-rays coming from Alcor—dwarf stars naturally radiate high levels of X-rays.

"It's pretty exciting to have found a companion to this particular star," says Mamajek. "Alcor and Mizar weren't just the first known binaries—the four stars that were once thought to be the single Mizar were discovered in lots of 'firsts' throughout history."

Benedetto Castelli, Galileo's protege and collaborator, first observed with a telescope that Mizar was not a single star in 1617, and Galileo observed it a week after hearing about this from Castelli, and noted it in his notebooks, says Mamajek. Those two stars, called Mizar A and Mizar B, together with Alcor, in 1857 became the first binary stars ever photographed through a telescope. In 1890, Mizar A was discovered to itself be a binary, being the first binary to be discovered using spectroscopy. In 1908, spectroscopy revealed that Mizar B was also a pair of stars, making the group the first-known quintuple star system.

Mamajek says some astronomers have raised the question of whether Alcor is truly a part of the system made up of the Mizar group of stars because Alcor's motion isn't what scientists would expect it to be if it were gravitationally connected to the Mizar group. Mamajek says that indeed Alcor is part of the same system, and that the influence of Alcor's newly discovered companion is partly responsible for Alcor's unexpected motion.

Mamajek is continuing his efforts to find planets around nearby stars, but his attention is not completely off Alcor and Mizar. "You see how the disk of Alcor B doesn't seem perfectly round?" says Mamajek, pointing toward an image of Alcor and its new companion. "Some of us have a feeling that Alcor might actually have another surprise in store for us."

About the University of Rochester

The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: Alcor Mamajek Mizar Science TV X-rays binary star system binary stars nearby star sextuplet system

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>