Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beaming with the light of millions of suns

27.02.2018

Astronomers find new clues in galactic mystery of ultraluminous sources of X-rays

In the 1980s, researchers began discovering extremely bright sources of X-rays in the outer portions of galaxies, away from the supermassive black holes that dominate their centers. At first, researchers thought these cosmic objects, called ultraluminous X-ray sources, or ULXs, were hefty black holes with more than ten times the mass of the sun.


Image of the Whirlpool galaxy, or M51. X-ray light seen by NASA's Chandra X-ray Observatory is shown in purple, and optical light from NASA's Hubble Space Telescope is red, green and blue. The ultraluminous X-ray source, or ULX, in the new Caltech-led study is indicated.

Credit. NASA/CXC/Caltech/M.Brightman et al.; Optical: NASA/STScI

But observations beginning in 2014 from NASA's NuSTAR and other space telescopes are showing that some ULXs, which glow with X-ray light equal in energy to millions of suns, are actually neutron stars -- the burnt-out cores of massive stars that exploded. Three such ULXs have been identified as neutron stars so far.

Now, a Caltech-led team using data from NASA's Chandra X-ray Observatory has identified a fourth ULX as being a neutron star -- and found new clues about how these objects can shine so brightly.

Neutron stars are extremely dense objects -- a teaspoon would weigh about a billion tons, or as much as a mountain. Their gravity pulls surrounding material from companion stars onto them, and as this material is tugged on, it heats up and glows with X-rays. But as the neutron stars "feed" on the matter, there comes a time when the resulting X-ray light pushes the matter away. Astronomers call this point -- when the objects cannot accumulate matter any faster and give off any more X-rays -- the Eddington limit.

"In the same that we can only eat so much food at a time, there are limits to how fast neutron stars can accrete matter," says Murray Brightman, a postdoctoral scholar at Caltech and lead author of a new report on the findings in Nature Astronomy. "But ULXs are somehow breaking this limit to give off such incredibly bright X-rays, and we don't know why."

In the new study, the researchers looked at a ULX in the Whirlpool galaxy, also known as M51, which lies about 28 million light-years away. They analyzed archival X-ray data taken by Chandra and discovered an unusual dip in the ULX's light spectrum. After ruling out all other possibilities, they figured out that the dip was from a phenomenon called cyclotron resonance scattering, which occurs when charged particles -- either positively charged protons or negatively charged electrons -- circle around in a magnetic field. Black holes don't have magnetic fields and neutron stars do, so the finding revealed that this particular ULX in M51 had to be a neutron star.

Cyclotron resonance scattering creates telltale signatures in a star's spectrum of light and the presence of these patterns, called cyclotron lines, can provide information about the strength of the star's magnetic field--but only if the cause of the lines, whether it be protons or electrons, is known. The researchers don't have a detailed enough spectrum of the new ULX to say for certain.

"If the cyclotron line is from protons, then we know that these magnetic fields around the neutron star are extremely strong and may in fact be helping to breaking the Eddington limit," says Brightman. Such strong magnetic fields could reduce the pressure from a ULX's X-rays -- the pressure that normally pushes away matter -- allowing the neutron star to consume more matter than what is typical and shine with the extremely bright X-rays.

If the cyclotron line is from circling electrons, in contrast, then the magnetic field strength around the neutron star would not be exceptionally strong, and thus the field is probably not the reason these stars break the Eddington limit. To further address the mystery, the researchers are planning to acquire more X-ray data on the ULX in M51 and look for more cyclotron lines in other ULXs.

"The discovery that these very bright objects, long thought to be black holes with masses up to 1,000 times that of the sun, are powered by much less massive neutron stars, was a huge scientific surprise," says Fiona Harrison, Caltech's Benjamin M. Rosen Professor of Physics; the Kent and Joyce Kresa Leadership Chair of the Division of Physics, Mathematics and Astronomy; and the principal investigator of the NuSTAR mission. "Now we might actually be getting firm physical clues as to how these small objects can be so mighty."

###

The Nature Astronomy study, titled "Magnetic field strength of a neutron-star-powered ultraluminous X-ray source," was funded by NASA and the Ernest Rutherford Fellowships. Other authors include F. Fürst of the European Space Astronomy Centre; M.J. Middleton of University of Southampton, United Kingdom; D.J. Walton and A.C. Fabian of University of Cambridge, United Kingdom; D. Stern of NASA's Jet Propulsion Laboratory; M. Heida of Caltech; D. Barret of France's Centre national de la recherche scientifique and University of Toulouse; and M. Bachetti of Italy's Istituto Nazionale di Astrofisica.

Media Contact

Whitney Clavin
wclavin@caltech.edu
626-395-1856

 @caltech

http://www.caltech.edu 

Whitney Clavin | EurekAlert!

Further reports about: Electrons M51 X-ray astronomy black holes cyclotron magnetic fields neutron star neutron stars

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>