Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Axion particle spotted in solid-state crystal

08.10.2019

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature, (TaSe₄)₂I is a one-dimensional crystal, in which electrical current is conducted by Weyl fermions. However, by cooling (TaSe₄)₂I down below -11 °C, these Weyl fermions themselves condense into a crystal – a so called “charge density wave” – which distorts the underlying crystal lattice of the atoms.


Scheme of a Weyl-semimetal-based axion insulator

Johannes Gooth, MPI CPfS

The initially free Weyl fermions are now localized and the initial Weyl semimetal (TaSe₄)₂I becomes an axion insulator. Similar to the existence of free electrons in metallic atomic crystals, the Weyl semimetal-based charge-density-wave crystal hosts axions that can conduct electrical current.

However, such axions behave quite differently from the more familiar electrons. When exposed to parallel electric and magnetic fields, they produce an anomalous positive contribution to the magnetoelectric conductivity.

Based on predictions from Andrei Bernevig's group at Princeton University, the group of Claudia Felser in Dresden produced the charge density wave Weyl metalloid (TaSe₄)₂I and investigated the electrical conduction in this material under the influence of electric and magnetic fields. It was found that the electric current in this material below -11 °C is actually carried by axion particles.

The results of the experiments were published in Nature magazine.

"It's very surprising that materials that we think we know are suddenly showing such interesting quantum particles," says Claudia Felser, one of the lead authors of the paper.

Examining the novel properties of axion particles in table-top experiments could not only allow scientists to better understand the mysterious realm of quantum particles, but also to open up the field of highly correlated topological materials.

"Another building block to my lifelong dream of realizing ideas from astronomic and high-energy physics with table-top experiments in solids," says Johannes Gooth.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS ( www.cpfs.mpg.de ) is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Wissenschaftliche Ansprechpartner:

Johannes Gooth

johannes.gooth@cpfs.mpg.de

Originalpublikation:

Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature https://doi.org/10.1038/s41586-019-1630-4 (2019).

Weitere Informationen:

https://www.nature.com/articles/s41586-019-1630-4
https://doi.org/10.1038/s41586-019-1630-4
https://www.cpfs.mpg.de/3126101/20191007_04

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Physics and Astronomy:

nachricht Cesium vapor aids in the search for dark matter
08.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht Physicists from Ulm put Einstein to the test - Atomic clock on space-time voyage: a quantum-mechanical twin paradox
07.10.2019 | Universität Ulm

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

Im Focus: Many gas giant exoplanets waiting to be discovered

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA's WFIRST space...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Axion particle spotted in solid-state crystal

08.10.2019 | Physics and Astronomy

Striking a balance: a mechanism to control autoimmunity

08.10.2019 | Life Sciences

Physicists from Ulm put Einstein to the test - Atomic clock on space-time voyage: a quantum-mechanical twin paradox

07.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>