Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic Particles Help Solve Planetary Puzzle

12.11.2009
A University of Arkansas professor and his colleagues have shown that the Earth’s mantle contains the same isotopic signatures from magnesium as meteorites do, suggesting that the planet formed from meteoritic material. This resolves a long-standing debate in the field over the planet’s origins.

Fangzhen Teng, assistant professor of geosciences at the University of Arkansas, and Wei Yang and Hong-Fu Zhang of the Chinese Academy of Sciences report their findings in Earth and Planetary Science Letters.

The researchers examined magnesium isotopes in chondrites – meteorites containing elements formed from the condensation of hot gases in the solar system. They also looked at samples from different depths in the Earth’s mantle. Isotopes have the same chemical properties, but different weights, so some processes cause what looks like the same material to behave differently. The different proportions of isotopes within a rock can tell scientists something about the original source of the material.

Magnesium makes a particularly good marker for planetary origins because, first, isotopes of magnesium can be separated during evaporation and condensation in the solar system and, second and more uniquely, one isotope of magnesium, Mg26, is a decay product of Al26, which existed in the early solar system for less than 5 million years. Thus, materials with different origins and ages contain different amounts of Al26, which results in different amounts of magnesium isotope.

“Isotopes are very sensitive to sources of material,” Teng said. “We can use isotopes as a tool to further understand planetary origins.”

Teng’s group analyzed different types of rocks from different depths of the Earth’s mantle from a site in North China and compared the results to those of samples from chondritic meteorites. They looked at magnesium isotopes in samples from the whole rock, but they also separated out minerals from the rocks and examined the magnesium isotope composition of these minerals as well.

“The samples from Earth were slightly different from one another,” Teng said. Their compositions also matched closely with those of the meteorites, the researchers report.

“That’s very strong evidence that Earth has a chondritic magnesium composition,” Teng said.

Teng is a professor in the J. William Fulbright College of Arts and Sciences and is a member of the Arkansas Center for Space and Planetary Sciences.

Teng’s research is funded by the National Science Foundation.

CONTACTS:
Fangzhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-4524, fteng@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>