Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic parity violation research reaches new milestone

12.11.2018

Measurement of parity violation for different isotopes of atomic ytterbium agrees with predictions of the Standard Model of particle physics

A reflection always reproduces objects as a complete mirror image, rather than just its individual parts or individual parts in a completely different orientation. It's all or nothing, the mirror can't reflect just a little. This illustrates a fundamental symmetry principle in nature.


Experimental set-up of the ytterbium experiment at the Helmholtz Institute Mainz with the physicist Dr. Dionysis Antypas

photo/©: Dionysis Antypas

For decades, physics assumed that the laws of nature in our world and in the mirror world would be identical, that parity would be preserved. Then in 1956, in the realm of elementary particles, or more precisely in the realm of the weak interaction, researchers discovered a violation of this principle.

Parity violation has been a subject of scientific research ever since. Physicists at Johannes Gutenberg University Mainz (JGU) have recently succeeded in observing parity violation in ytterbium atoms with different numbers of neutrons.

The initial effect of the measurements is to confirm the predictions of the Standard Model of particle physics that atoms with different numbers of neutrons would demonstrate parity violation. The research was published in the renowned Nature Physics journal.

Parity violation effect increases with number of neutrons

Parity violation is only known to occur in the weak interaction, one of the four fundamental forces of nature. It was first discovered in beta decay in 1956, in atoms in 1979, and was subsequently studied in various elements.

In 1995 at the University of California in Berkeley, Professor Dmitry Budker started performing precision measurements on the element ytterbium, a rare earth metal. It was this work he brought with him when he came to Mainz University in 2014.

"Our research involves various isotopes of ytterbium. Isotopes are atoms with the same number of protons but different numbers of neutrons in the nucleus," explained Dr. Dionysis Antypas of the Helmholtz Institute Mainz (HIM).

"We selected a chain of four of ytterbium's seven isotopes and confirmed the predictions of the Standard Model: the more neutrons in the nucleus, the greater the parity violation effect," said Antypas, summarizing the results of four years of work in the project.

Comparing the effect in different isotopes was first proposed by Prof. Victor Flambaum in 1986. Flambaum, an Australian physicist from the University of New South Wales, has been a fellow of Mainz University's Gutenberg Research College (GRC) for two years and performs collaborative research with the JGU scientists.

The physicists conducted the research using an apparatus at the Helmholtz Institute Mainz: in the presence of an electric and a magnetic field, ytterbium atoms are excited by laser light and the amplitude of the parity violation is measured.

Results pave the way for further investigations into the nucleus of ytterbium

"The latest findings mark a significant milestone in research into atomic parity violation," said Budker, summarizing the data. "They are also a very significant milestone on the road to future research objectives."

The scientists' measurements also offer information on an additional Z boson. Z bosons mediate the weak interaction. Scientists in the field speculate the existence of a further Z boson, referred to as the "Z prime" or "Z" with a much smaller mass than that of the established Z boson.

In the future, Budker and Antypas plan to study ytterbium's nucleus to determine the distribution of its neutrons and study the weak interaction between its nucleons. These projects are in line with the MESA program and projects of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ytterbium_pv.jpg
Experimental set-up of the ytterbium experiment at the Helmholtz Institute Mainz with the physicist Dr. Dionysis Antypas
photo/©: Dionysis Antypas

Wissenschaftliche Ansprechpartner:

Dr. Dionysis Antypas
Helmholtz Institute Mainz
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-29717
e-mail: dantypas@uni-mainz.de
https://budker.uni-mainz.de/?page_id=70

Originalpublikation:

D. Antypas et al., Isotopic variation of parity violation in atomic ytterbium, Nature Physics,
29 October 2018,
DOI: 10.1038/s41567-018-0312-8
https://www.nature.com/articles/s41567-018-0312-8

Weitere Informationen:

https://budker.uni-mainz.de/ – Budker Group ;
https://budker.uni-mainz.de/?page_id=20 – Parity violation in Ytterbium ;
https://www.hi-mainz.de/ – Helmholtz Institute Mainz (HIM) ;
http://www.magazin.uni-mainz.de/2452_ENG_HTML.php – JGU Magazine: "Not everything in the universe is symmetrical" (9 Jan. 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>