Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Atmosphere of mid-size planet revealed by Hubble and Spitzer


Two NASA space telescopes have teamed up to identify, for the first time, the detailed chemical "fingerprint" of a planet between the sizes of Earth and Neptune. No planets like this can be found in our own solar system, but they are common around other stars.

The planet, Gliese 3470 b (also known as GJ 3470 b), may be a cross between Earth and Neptune, with a large rocky core buried under a deep crushing hydrogen and helium atmosphere.

This artist's illustration shows the theoretical internal structure of the exoplanet GJ 3470 b. It is unlike any planet found in the Solar System. Weighing in at 12.6 Earth masses the planet is more massive than Earth but less massive than Neptune. Unlike Neptune, which is 3 billion miles from the Sun, GJ 3470 b may have formed very close to its red dwarf star as a dry, rocky object. It then gravitationally pulled in hydrogen and helium gas from a circumstellar disk to build up a thick atmosphere. The disk dissipated many billions of years ago, and the planet stopped growing. The bottom illustration shows the disk as the system may have looked long ago. Observation by NASA's Hubble and Spitzer space telescopes have chemically analyzed the composition of GJ 3470 b's very clear and deep atmosphere, yielding clues to the planet's origin. Many planets of this mass exist in our galaxy.

Credit: NASA, ESA, and L. Hustak (STScI)

Weighing in at 12.6 Earth masses, the planet is more massive than Earth, but less massive than Neptune (which is more than 17 Earth masses).

Many similar worlds have been discovered by NASA's Kepler space observatory, whose mission ended in 2018. In fact, 80% of the planets in our galaxy may fall into this mass range. However, astronomers have never been able to understand the chemical nature of such a planet until now, researchers say.

By inventorying the contents of GJ 3470 b's atmosphere, astronomers are able to uncover clues about the planet's nature and origin.

"This is a big discovery from the planet formation perspective. The planet orbits very close to the star and is far less massive than Jupiter--318 times Earth's mass--but has managed to accrete the primordial hydrogen/helium atmosphere that is largely "unpolluted" by heavier elements," said Björn Benneke of the University of Montreal, Canada. "We don't have anything like this in the solar system, and that's what makes it striking."

Astronomers enlisted the combined multi-wavelength capabilities NASA's Hubble snd Spitzer space telescopes to do a first-of-a-kind study of GJ 3470 b's atmosphere.

This was accomplished by measuring the absorption of starlight as the planet passed in front of its star (transit) and the loss of reflected light from the planet as it passed behind the star (eclipse). All totaled, the space telescopes observed 12 transits and 20 eclipses. The science of analyzing chemical fingerprints based on light is called "spectroscopy."

"For the first time we have a spectroscopic signature of such a world," said Benneke. But he is at a loss for classification: Should it be called a "super-Earth" or "sub-Neptune?" Or perhaps something else?

Fortuitously, the atmosphere of GJ 3470 b turned out to be mostly clear, with only thin hazes, enabling the scientists to probe deep into the atmosphere.

"We expected an atmosphere strongly enriched in heavier elements like oxygen and carbon which are forming abundant water vapor and methane gas, similar to what we see on Neptune", said Benneke. "Instead, we found an atmosphere that is so poor in heavy elements that its composition resembles the hydrogen/helium rich composition of the Sun."

Other exoplanets called "hot Jupiters" are thought to form far from their stars, and over time migrate much closer. But this planet seems to have formed just where it is today, says Benneke.

The most plausible explanation, according to Benneke, is that GJ 3470 b was born precariously close to its red dwarf star, which is about half the mass of our Sun. He hypothesizes that essentially it started out as a dry rock, and rapidly accreted hydrogen from a primordial disk of gas when its star was very young. The disk is called a "protoplanetary disk."

"We're seeing an object that was able to accrete hydrogen from the protoplanetary disk, but didn't runaway to become a hot Jupiter," said Benneke. "This is an intriguing regime."

One explanation is that the disk dissipated before the planet could bulk up further. "The planet got stuck being a sub-Neptune," said Benneke.

NASA's upcoming James Webb Space Telescope will be able to probe even deeper into GJ 3470 b's atmosphere thanks to the Webb's unprecedented sensitivity in the infrared. The new results have already spawned large interest by American and Canadian teams developing the instruments on Webb. They will observe the transits and eclipses of GJ 3470 b at light wavelengths where the atmospheric hazes become increasingly transparent.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

The Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate in Washington, D.C. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space Systems in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.



Artist's Illustration: NASA, ESA, and L. Hustak (STScI); Science: NASA, ESA, and B. Benneke (University of Montreal)

Claire Andreoli | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Fast radio burst pinpointed to distant galaxy
08.07.2019 | California Institute of Technology

nachricht First observation of native ferroelectric metal
08.07.2019 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

First observation of native ferroelectric metal

08.07.2019 | Physics and Astronomy

Fast radio burst pinpointed to distant galaxy

08.07.2019 | Physics and Astronomy

Atmosphere of mid-size planet revealed by Hubble and Spitzer

08.07.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>