Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists unwind "Cold Dark Matter Catastrophe" conundrum

14.01.2010
For nearly twenty years scientists have been trying to resolve the discrepancy in the cold dark matter paradigm - the so-called "Cold Dark Matter catastrophe". Recently an international research group including physics professor Lucio Mayer from the University of Zurich has succeeded in unraveling this paradox in a simulation of bulgeless dwarf galaxy formation.

Cold Dark Matter - present day science is still in pursuit of a proof of its existence. Numerous astrophysical phenomena are only explainable by assuming its existence: the Cold Dark Matter (CDM) paradigm accounts, for instance, for the distribution of galaxies and of standard matter in the universe on large scales, i.e. on the order of billions of light years, and including the nature of the relic microwave background radiation from the Big Bang.

However, when applied to individual galaxies - dimensions of hundreds to ten thousand light years - the model breaks down, leading to inconsistencies with the observations of astronomers.

Predictions by the model suggest that the central regions of galaxies should rotate at greater speed than is effectively indicated by astronomical measurements. As a result, the model implies a significantly higher density of CDM at the galactic core than allowed by measurements. For nearly two decades astrophysicists, particle physicists and astronomers have struggled to resolve this "Cold Dark Matter catastrophe", as this discrepancy is called among specialists, and to propose an convincing explanation for the varying behavior of DM at different scales. To date all attempts at explanation have fallen short or led to further irresolvable discrepancies. An international research group including Professor Lucio Mayer of the University of Zurich as one of three project leaders has now succeeded in unraveling this conundrum using a highly sophisticated supercomputer simulation.

Simulation of standard matter

Mayer and his colleagues simulated the formation of disc dwarf galaxies, for which the "Cold Dark Matter catastrophe" is particularly severe. In contrast to their predecessors, for the first time they modeled not only the behavior of CDM as influenced solely by gravitation, but also the highly complex behavior of baryonic matter, as normal, visible matter is also called, down to the scale

at which star clusters form. At 83 percent, DM composes the vast majority of a galaxy, but is nevertheless also influenced by baryonic matter, as the researchers could now demonstrate in their publication in "Nature".

Thanks to the high resolution simulations, which required the use of various supercomputers including one from NASA, Mayer and his colleagues could show with their model that during supernova explosions not only the interstellar gas but also CDM is pushed away from the core of a galaxy. In explosions of supernovae large quantities of normal, visible matter are removed from the galactic core in one blast: DM responds to the sudden change of the gravitational field by expanding away from the center and its density decreases. As a result the rotational velocity of the dwarf galaxy declines. Thus for the first time the simulated CDM paradigm and the nature of dwarf galaxies are in harmony - the apparent paradigmatic discrepancy is thereby resolved and the "Cold Dark Matter catastrophe" disappears.

Consequences for astrophysics and particle physics

These new findings bear consequences for particle physics and some of the methods employed for detecting DM particles. Among others the approach for demonstrating the presence of DM particles by means of their disintegration into gamma radiation is based on the density of DM in the core of galaxies. The simulation now predicts a significantly lower density of CDM than previously assumed at the core of dwarf galaxies, one of the targets of dark matter detection experiments. The anticipated radiation signals would therefore have to be weaker than formerly expected, requiring detectors of correspondingly greater sensitivity. Lucio Mayer, who holds an assistant professorship at the University of Zurich endowed by the Swiss National Science Foundation, will continue to work on the topic of "The Formation of Galaxies" in the future: one of his doctoral candidates, Simone Callegari, is already occupied with modeling the formation of massive disc galaxies resembling our own Milky Way galaxy.

Literature:
F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley, P. Jonsson, B. Willman, G. Stinson, T. Quinn and P. Madau: Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature, 14. January 2010
Contact:
Prof. Dr. Lucio Mayer, University of Zurich, Theoretical Physics
Tel. +41 44 63 56197
E-mail: lmayer@physik.uzh.ch
Downloads:
Simulation "Formation of a bulgeless dwarf galaxy through multiple supernovae explosions"(Short film 32 seconds).
http://dl.dropbox.com/u/1180829/h516.768gM.mpg
http://dl.dropbox.com/u/1180829/h799a2.mpg
The animation shows a simulation of the formation of a dwarf galaxy, which is a close analog to observed dwarf galaxies in the Universe. It follows the evolution of the dark matter and baryonic matter in the current cosmological model (the Lambda-CDM model) in which most of the matter is

dark and most of the energy density is provided by a cosmological constant. The animation starts a few hundred thousand years after the Big Bang and ends at the present time.

Beat Müller | idw
Further information:
http://dl.dropbox.com/u/1180829/h516.768gM.mpg
http://dl.dropbox.com/u/1180829/h799a2.mpg
http://www.uzh.ch/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>