Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018

Equators of Sun-like stars rotate up to two and a half times as fast as higher latitudes, NYU Abu Dhabi researchers have discovered

Sun-like stars rotate up to two and a half times faster at the equator than at higher latitudes, a finding by researchers at NYU Abu Dhabi that challenges current science on how stars rotate.


Sun-like stars rotate differentially, with the equator rotating faster than the higher latitudes. The blue arrows in the figure represent rotation speed. Differential rotation is thought to be an essential ingredient for generating magnetic activity and starspots.

Credit: MPI for Solar System Research/MarkGarlick.com

Until now, little was known about the precise rotational patterns of Sun-like stars, only that the equator spins faster than at higher latitudes, similar to the Sun.

Scientists at the NYU Abu Dhabi Center for Space Science used observations from NASA's Kepler mission and asteroseismology -- the study of sound waves traveling inside stars -- to determine with precision how Sun-like stars rotate, which no other scientific method has been able to achieve.

Their study found that Sun-like stars, characterized as being like the Sun in mass and age, do indeed rotate in a similar manner as the Sun in that their equatorial regions rotate more rapidly than at mid- to high latitudes. But there's a key difference.

The equator of the Sun rotates about 10 percent faster than its mid latitudes, while equators of Sun-like stars spin up to two and a half times faster than their mid latitudes.

"This is very unexpected, and challenges current numerical simulations, which suggest that stars like these should not be able to sustain differential rotation of this magnitude," said Othman Benomar, research associate at the NYU Abu Dhabi Center for Space Science and lead author of the study published in Science.

"Understanding differential rotation -- how fast one part of a star spins compared to the rest -- is not only important for a complete understanding of how a star works, it will help us gain deeper insights about their magnetic fields," explained Katepalli Sreenivasan, principal investigator of the NYU Abu Dhabi Center for Space Science.

Magnetic fields on the Sun have been known to cause enormous solar storms that frequently disrupt orbiting space satellites and have knocked out power grids on Earth.

Scientists agree that the rotation of the Sun plays a crucial role in the generation of the solar magnetic field, but the exact details still remain a mystery, despite the Sun having been observed and studied in great detail.

Sreenivasan added, "learning more about how stars rotate and generate their own magnetic fields could help us gain further insight into the solar dynamo, the physical process that generates the Sun's magnetic field."

###

The NYUAD Center for Space Science is supported by the NYUAD Research Institute, which promotes cutting-edge and innovative research through the support of its 12 centers, labs, and projects.

Additional facts

Asteroseismology

Allows scientists to determine precisely how a star rotates by measuring frequencies of acoustic waves inside the star. Helioseismology is used on the Sun for the same purpose.

Differential rotation

Rotation speeds on the Sun and stars vary at different latitudes because they are fluid (the middle spins faster than the poles). By contrast, a spinning basketball has rigid rotation -- it spins at the same speed from top to bottom.

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity's shared challenges. NYU Abu Dhabi's high-achieving students have come from 115 nations and speak over 115 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

Media Contact

Adam Pockriss
apockriss@rubenstein.com
212-843-8286

NYU Abu Dhabi - Google-Suche

Adam Pockriss | EurekAlert!
Further information:
https://nyuad.nyu.edu/

Further reports about: NYU Sreenivasan Sun-like stars magnetic field

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>