Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists from Clemson and Europe unmask a black hole

27.02.2012
A study of X-rays emitted a long time ago in a galaxy far, far away has unmasked a stellar mass black hole in Andromeda, a spiral galaxy about 2.6 million light-years from Earth.

Two Clemson University researchers joined an an international team of astronomers, including scientists at Germany's Max Planck Institute for Extraterrestrial Physics, in publishing their findings in a pair of scientific journals this week.

Scientists had suspected the black hole was possible since late 2009 when an X-ray satellite observatory operated by the Max Planck Institute detected an unusual X-ray transient light source in Andromeda.

"The brightness suggested that these X-rays belonged to the class of ultraluminous X-ray sources, or ULXs," said Amanpreet Kaur, a Clemson graduate student in physics and lead author of the paper published in the Astronomy & Astrophysics Journal. "But ULXs are rare. There are none at all in the Milky Way where Earth is located, and this is the first to be confirmed in Andromeda. Proving it required detailed observations."

Because ULX sources are rare — usually with just one or two in a galaxy, if they are present at all — there was very little data with which astronomers could make conjectures.

"There were two competing explanations for their high luminosities," said Clemson physics professor Dieter Hartmann, Kaur's mentor and a co-author of the paper. "Either a stellar mass black hole was accreting at extreme rates or there was a new subspecies of intermediate mass black holes accreting at lower rates. One of the greatest difficulties in attempting to find the right answer is the large distance to these objects, which makes detailed observations difficult or even impossible."

Working with scientists in Germany and Spain, the Clemson researchers studied data from the Chandra observatory and proved that the X-ray source was a stellar mass black hole that is swallowing material at very high rates.

Follow-up observations with the Swift and HST satellites yielded important complementary data, proving that it not only is the first ULX in Andromeda but also the closest ULX ever observed. Despite its great distance away, Andromeda is actually the nearest major galactic neighbor to our own Milky Way.

"We were very lucky that we caught the ULX early enough to see most of its light curve, which showed a very similar behavior to other X-ray sources from our own galaxy,” said Wolfgang Pietsch of the Max Planck Institute. The emission decayed exponentially with a characteristic timescale of about one month, which is a common property of stellar mass X-ray binaries. "This means that the ULX in Andromeda likely contains a normal, stellar black hole swallowing material at very high rates."

The emission of the ULX source, the scientists said, probably originates from a system similar to X-ray binaries in our own galaxy, but with matter accreting onto a black hole that is at least 13 times more massive than our Sun.

Unlike X-ray binaries in our own Milky Way, this source is much less obscured by interstellar gas and dust, allowing detailed investigations also at low X-ray energies.

Ideally, the astronomers would like to replicate their findings by re-observing the source in another outburst. However, if it is indeed similar to the X-ray binaries in our own Milky Way, they may be in for a long wait: Such outbursts can occur decades apart.

"On the other hand, as there are so many X-ray binaries in the Andromeda galaxy, another similar outbursting source could be captured any time by the ongoing monitoring campaign," Hartmann said. "While 'monitoring' may not sound exciting, the current results show that these programs are often blessed with discovery and lead to breakthroughs; in particular, if they are augmented with deep and sustained follow-up."

Dieter Hartmann | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Physics and Astronomy:

nachricht ATLAS telescope discovers first-of-its-kind asteroid
25.05.2020 | University of Hawaii at Manoa

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>