Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers reassured by record-breaking star formation in huge galaxy cluster

16.08.2012
Until now, evidence for what astronomers suspect happens at the cores of the largest galaxy clusters has been uncomfortably scarce. Theory predicts that cooling flows of gas should sink toward the cluster's center, sparking extreme star formation there, but so far – nada, zilch, not-so-much.

The situation changed dramatically when a large international team of over 80 astronomers, led by Massachusetts Institute of Technology's Hubble Fellow Michael McDonald, studied a recently discovered (yet among the largest-known) galaxy cluster.

The team found evidence for extreme star formation, or a starburst, significantly more extensive than any seen before in the core of a giant galaxy cluster. "It is indeed reassuring to see this process in action," says McDonald. "Further study of this system may shed some light on why other clusters aren't forming stars at these high rates, as they should be."

The result, published in the August 16th issue of the journal Nature, began developing in 2010 when data from the South Pole Telescope (SPT) allowed astronomers to identify the huge cluster of galaxies some 5.7 billion light-years distant. Designated SPT-CLJ2344-4243, it's among the largest galaxy clusters in the universe.

"Our first observations of this cluster with the Gemini South telescope in Chile really helped to ignite this work," says McDonald. "They were the first hints that the central galaxy in this cluster was such a beast!" The paper's second author, Matthew Bayliss of Harvard University, adds, "When I first saw the Gemini spectrum, I thought we must have mixed up the spectra, it just looked so bizarre compared to anything else of its kind." Bayliss and Harvard graduate student Jonathan Ruel used the Gemini data to determine the cluster's distance; they also corroborated its huge mass with estimates from X-ray data obtained with the Chandra X-ray Observatory. Additional survey data from the National Optical Astronomy Observatory's (NOAO) Blanco Telescope in Chile augmented the early characterization of this cluster. A Blanco image of the cluster is available as part of this press release.

With this result, astronomers now believe they have finally seen, at least in this one large cluster of galaxies, what they expected to find all along – a massive burst of star formation, presumably fueled by an extensive flow of cooling gas streaming inward toward the cluster's central core galaxy. The sinking gas is likely sparking star formation and a lively, dynamic environment – somewhat like a cold front triggering thunderstorms on a hot summer's day. This is in rich contrast to most other large galaxy clusters where central galaxies appear to have stopped forming new stars billions of years ago – an uncomfortable discrepancy known as the "cooling-flow problem."

According to theory, the hot plasma that fills the spaces between galaxy cluster members should glow in X-rays as it cools, in much the same way that hot coals glow red. As the galaxy cluster forms, this plasma initially heats up due to the gravitational energy released from the infall of smaller galaxies. As the gas cools, it should condense and sink inward (known as a cooling flow). In the cluster's center, this cooling flow can lead to very dense cores of gas, termed "cool cores," which should fuel bursts of star formation in all clusters that go through this process. Most of these predictions had been confirmed with observations—the X-ray glow, the lower temperatures at the cluster centers— but starbursts accompanying this cooling remain rare.

SPT-CLJ2344-4243, nicknamed the "Phoenix Cluster, lies in the direction of the southern constellation Phoenix, which McDonald suggests is fitting. "The mythology of the Phoenix – a bird rising from the dead – is a great way to describe this revived object," says McDonald. "While galaxies at the center of most clusters may have been dormant for billions of years, the central galaxy in this cluster seems to have come back to life with a new burst of star formation."

The team combined multiple ground- and space-based observations including data from the Gemini South 8-meter and the NOAO Blanco 4-meter telescopes, both in Chile and funded with support by the U.S. National Science Foundation (as is the South Pole Telescope which made the initial discovery of this galaxy cluster in 2010). Observations critical to this research also included the Chandra X-ray Observatory, NASA's WISE and GALEX observatories, and the European Space Agency's Herschel Observatory.

Antonieta Garcia | EurekAlert!
Further information:
http://www.gemini.edu

More articles from Physics and Astronomy:

nachricht Return of the Blob: Surprise link found to edge turbulence in fusion plasma
27.05.2020 | DOE/Princeton Plasma Physics Laboratory

nachricht NIST researchers boost microwave signal stability a hundredfold
26.05.2020 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>