Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers probe swirling particles in halo of starburst galaxy

28.03.2017

Astronomers have used a radio telescope in outback Western Australia to see the halo of a nearby starburst galaxy in unprecedented detail.

A starburst galaxy is a galaxy experiencing a period of intense star formation and this one, known as NGC 253 or the Sculptor Galaxy, is approximately 11.5 million light-years from Earth.


This is the NGC253 starburst galaxy in optical (green; SINGG Survey) and radio (red; GLEAM) wavelengths. The H-alpha line emission, which indicates regions of active star formation, is highlighted in blue (SINGG Survey; Meurer+2006).

Credits: A.D. Kapinska, G. Meurer. ICRAR/UWA/CAASTRO

"The Sculptor Galaxy is currently forming stars at a rate of five solar masses each year, which is a many times faster than our own Milky Way," said lead researcher Dr Anna Kapinska, from The University of Western Australia and the International Centre for Radio Astronomy Research (ICRAR) in Perth.

"This galaxy is famous because it's beautiful and very close to us, and because of what's happening inside it--it's quite extraordinary."

The Sculptor Galaxy has an enormous halo of gas, dust and stars, which had not been observed before at frequencies below 300 MHz. The halo originates from galactic "fountains" caused by star formation in the disk and a super-wind coming from the galaxy's core.

"We're very fortunate to have such a great example of a starburst galaxy in our own cosmic backyard--it's like having a galaxy-sized laboratory on hand to conduct experiments and test our theories," said Dr Kapinska.

The study used data from the 'GaLactic and Extragalactic All-sky MWA', or 'GLEAM' survey, which was observed by the Murchison Widefield Array (MWA) radio telescope located in remote Western Australia.

"With the GLEAM survey we were able, for the first time, to see this galaxy in its full glory with unprecedented sensitivity at low radio frequencies," said Dr Kapinska.

"It's remarkable how easily the MWA detected the diffuse halo, we managed it with just an hour of observing as the galaxy passed overhead," she said.

"We could see radio emission from electrons accelerated by supernova explosions spiralling in magnetic fields, and absorption by dense electron-ion plasma clouds --it's absolutely fascinating."

The MWA is a precursor to the Square Kilometre Array (SKA) radio telescope, part of which will be built in Western Australia in the next decade.

Co-author Professor Lister Staveley-Smith, from ICRAR and the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), said the SKA will be the largest radio telescope in the world and will be capable of discovering many new star-forming galaxies when it comes online.

"But before we're ready to conduct a large-scale survey of star-forming and starburst galaxies with the SKA we need to know as much as possible about these galaxies and what triggers their extreme rate of star formation," he said.

"By getting to the bottom of what's causing this galaxy to produce so many stars, we can better understand how other galaxies form, grow and change over time throughout the Universe."

###

More Information:

The MWA: The Murchison Widefield Array (MWA) is a low frequency radio telescope located at the Murchison Radio-astronomy Observatory in Western Australia's Mid West. The MWA observes radio waves with frequencies between 70 and 320 MHz and was the first of the three Square Kilometre Array (SKA) precursors to be completed.

The SKA: Co-located primarily in South Africa and Western Australia, the SKA will be a collection of hundreds of thousands of radio antennas with a combined collecting area equivalent to approximately one million square metres, or one square kilometre.

ICRAR: The International Centre for Radio Astronomy Research, or ICRAR, is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

CAASTRO: CAASTRO is a collaboration of The University of Sydney, The Australian National University, The University of Melbourne, Swinburne University of Technology, The University of Queensland, The University of Western Australia and Curtin University. It is funded under the Australian Research Council (ARC) Centre of Excellence program, with additional funding from the seven participating universities and from the NSW State Government's Science Leveraging Fund.

Multimedia:

High-resolution images (plus captions and credits) are available from http://www.icrar.org/starburst

Contacts:

Dr Anna Kapinska (ICRAR-UWA, CAASTRO)
Ph: +61 474 476 790 E: Anna.Kapinska@icrar.org

Dr Lister Staveley-Smith (ICRAR-UWA, CAASTRO)
Ph: +61 425 212 592 E: Lister.Staveley-Smith@icrar.org

Pete Wheeler (Media Contact, ICRAR)
Ph: +61 423 982 018 E: Pete.Wheeler@icrar.org

http://www.icrar.org/ 

Pete Wheeler | EurekAlert!

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>