Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers pinpoint elusive galaxy after decade-long hunt – and find it's not alone

14.06.2012
An international team of astronomers led by Fabian Walter of the Max Planck Institute for Astronomy has, for the first time, determined the distance of the galaxy HDF850.1, well-known among astronomers as being one of the most productive star-forming galaxies in the observable universe.
The galaxy is at a distance of 12.5 billion light years. Hence, we see it as it was 12.5 billion years ago. Even more of a surprise, HDF850.1 turns out to be part of a group of around a dozen protogalaxies that formed within the first billion years of cosmic history – only one of two such primordial clusters known to date. The work is being published in the journal Nature.

The galaxy HDF850.1 was discovered in 1998. It is famous for producing new stars at a rate that is near-incredible even on astronomical scales: a combined mass of a thousand Suns per year. For comparison: an ordinary galaxy such as our own produces no more than one solar mass's worth of new stars per year. Yet for the past fourteen years, HDF850.1 has remained strangely elusive – its location in space, specifically: its distance from Earth the subject of many studies, but ultimately unknown. How was that possible?

The "Hubble Deep Field", where HDF850.1 is located, is a region in the sky that affords an almost unparalleled view into the deepest reaches of space. It was first studied extensively using the Hubble Space Telescope. Yet observations using visible light only reveal part of the cosmic picture, and astronomers were quick to follow-up at different wavelengths. In the late 1990s, astronomers using the James Clerk Maxwell Telescope on Hawai'i surveyed the region using submillimeter radiation. This type of radiation, with wavelengths between a few tenths of a millimeter and a millimeter, is particularly suitable for detecting cool clouds of gas and dust.

The researchers were taken by surprise when they realized that HDF850.1 was the brightest source of submillimeter emission in the field by far, a galaxy that was evidently forming as many stars as all the other galaxies in the Hubble Deep Field combined – and which was completely invisible in the observations of the Hubble Space Telescope!

"The galaxy's invisibility is no great mystery. Stars form in dense clouds of gas and dust. These dense clouds are opaque to visible light, hiding the galaxy from sight. Submillimeter radiation passes through the dense dust clouds unhindered, showing what is inside. But the lack of data from all but a very narrow range of the spectrum made it very difficult to determine the galaxy's redshift, and thus its place in cosmic history," explains Fabian Walter of the Max Planck Institute for Astronomy.

Now Fabian Walter, leading an international group of researchers has managed to solve the mystery: Taking advantage of recent upgrades to the IRAM interferometer on the Plateau de Bure in the French Alps, which combines six radio antennas that then act as one gigantic millimeter telescope, the researchers identified the characteristic features ("spectral lines") necessary for an accurate distance measurement. "It is the availability of more powerful and sensitive instruments recently installed on the IRAM interferometer that allowed us to detect these weak lines in HDF850.1, and finally find what we had been unsuccessfully looking for, during the past 14 years," explains Pierre Cox, Director of IRAM.

The result is a surprise: The galaxy is at a distance of 12.5 billion light-years from Earth (z ~ 5.2). We see it as it was 12.5 billion years ago, at a time when the universe itself was only 1.1 billion years old! HDF850.1's intense star-forming activity thus belongs to a very early period of cosmic history, when the universe was less than 10% of its current age.

A combination with observations obtained at the National Science Foundation's Karl Jansky Very Large Array (VLA), a giant compound radio telescope in the US state of New Mexico, then revealed that a large fraction of the galaxy's mass is in the form of molecules – the raw material for future stars. The fraction is much higher than what is found in galaxies in the local universe.

Once the distance was known, the researchers were able to put the galaxy into context. Using additional data from published and unpublished surveys, they were able to show that the galaxy is part of what appears to be an early form of galaxy cluster – one of only two such clusters known to date.

The new work highlights the importance of future, more powerful interferometers operating at millimeter and submillimeter wavelengths. Both NOEMA, the future extension of the Plateau de Bure interferometer, and ALMA, a new interferometer array currently being built by an international consortium in the Atacama desert in Chile, will cover these wavelengths in unprecedented detail. They should allow for distance determinations and more detailed study of many more galaxies, invisible at optical wavelengths, that were actively forming stars in the early universe.

Contact information

Fabian Walter (lead author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 225
Email: walter@mpia.de

Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2012/PR120613/PR_120613_en.html

More articles from Physics and Astronomy:

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

nachricht The measurements of the expansion of the universe don't add up
19.11.2019 | FECYT - Spanish Foundation for Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Walking Changes Vision

20.11.2019 | Health and Medicine

Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

20.11.2019 | Materials Sciences

Black carbon found in the Amazon River reveals recent forest burnings

20.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>