Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers look to neighboring galaxy for star formation insight

01.12.2011
An international team of astronomers has mapped in detail the star-birthing regions of the nearest star-forming galaxy to our own, a step toward understanding the conditions surrounding star creation.

Led by University of Illinois astronomy professor Tony Wong, the researchers published their findings in the December issue of the Astrophysical Journal Supplement Series.

The Large Magellanic Cloud (LMC) is a popular galaxy among astronomers both for its nearness to our Milky Way and for the spectacular view it provides, a big-picture vista impossible to capture of our own galaxy.

“If you imagine a galaxy being a disc, the LMC is tilted almost face-on so we can look down on it, which gives us a very clear view of what’s going on inside,” Wong said.

Although astronomers have a working theory of how individual stars form, they know very little about what triggers the process or the environmental conditions that are optimal for star birth. Wong’s team focused on areas called molecular clouds, which are dense patches of gas – primarily molecular hydrogen – where stars are born. By studying these molecular clouds and their relationship to new stars in the galaxy, the team hopes to learn more about the metamorphosis of gas clouds into stars.

“When we study star formation, an important question is, what is the environment doing? How does the location of star formation reflect the conditions of that environment? There’s no better place to study the wider environment than the LMC.”

Using a 22-meter-diameter radio telescope in Australia, the astronomers mapped more than 100 molecular clouds in the LMC and estimated their sizes and masses, identifying regions with ample material for making stars. This seemingly simple task engendered a surprising find.

Conventional wisdom states that most of the molecular gas mass in a galaxy is apportioned to a few large clouds. However, Wong’s team found many more low-mass clouds than they expected – so many, in fact, that a majority of the dense gas may be sprinkled across the galaxy in these small molecular clouds, rather than clumped together in a few large blobs.

“We thought that the big clouds hog most of the mass,” Wong said, “but we found that in this galaxy, it appears that the playing field is more level. The low-mass clouds are quite numerous and they actually contribute a significant amount of the mass. This provides the first evidence that the common wisdom about molecular clouds may not apply here.”

The large numbers of these relatively low-mass clouds means that star-forming conditions in the LMC may be relatively widespread and easy to achieve. The findings raise some interesting questions about why some galaxies stopped their star formation while others have continued it.

To better understand the connection between molecular clouds and star formation, the team compared their molecular cloud maps to maps of infrared radiation, which reveal where young stars are heating cosmic dust.

For the comparison, they exploited a carefully selected sample of newborn heavy stars compiled by U. of I. astronomy professor You-Hua Chu and resident scientist Robert Gruendl, who also were co-authors of the paper. These stars are so young that they are still deeply embedded in cocoons of gas and dust.

“It turns out that there’s actually very nice correspondence between these young massive stars and molecular clouds,” Wong said. “That’s not entirely surprising, but it’s reassuring. We assume that these stars have to form in molecular clouds, and it tells us that the molecular clouds do hang around long enough for us to see them associated with these massive young stars.”

Wong hopes to continue to study the relationship between molecular clouds and star formation in greater detail. If researchers can determine the relative ages of young stars, they can correlate these against molecular clouds to figure out which clouds have star formation, how long the clouds live and what eventually leads to their destruction. They also plan to use a newly constructed array of telescopes in Chile to see the cloud environment in higher resolution, pinpointing exactly where inside the molecular cloud star formation will occur.

“This study provides us with our most detailed view of an entire population of clouds in another galaxy,” Wong said. “We can say with great confidence that these clouds are where the stars form, but we are still trying to figure out why they have the properties they do.”

The National Science Foundation and NASA supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/11/1130lmc_TonyWong.html

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>