Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find bounty of failed stars

12.10.2011
Astronomers find bounty of failed stars: One youngster only six times heftier than Jupiter

A University of Toronto-led team of astronomers has discovered over two dozen new free-floating brown dwarfs, including a lightweight youngster only about six times heftier than Jupiter, that reside in two young star clusters. What's more, one cluster contains a surprising surplus of them, harbouring half as many of these astronomical oddballs as normal stars.

"Our findings suggest once again that objects not much bigger than Jupiter could form the same way as stars do. In other words, nature appears to have more than one trick up its sleeve for producing planetary mass objects," says Professor Ray Jayawardhana, Canada Research Chair in Observational Astrophysics at the University of Toronto and leader of the international team that made the discovery.

Brown dwarfs straddle the boundary between stars and planets. Sometimes described as failed stars, they glow brightly when young, from the heat of formation, but cool down over time and end up with atmospheres that exhibit planet-like characteristics. Scientists think that most brown dwarfs may have formed like stars, in isolation from contracting gas clouds, but some of the puniest free-floaters may have formed like planets around a star and later ejected.

The findings come from observations using the Subaru Telescope in Hawaii and the Very Large Telescope (VLT) in Chile during the Substellar Objects in Nearby Young Clusters (SONYC) survey. Astronomers took extremely deep images of the NGC 1333 and rho Ophiuchi star clusters with Subaru at both optical and infrared wavelengths. Once they identified candidate brown dwarfs from the very red colors, the research team confirmed them with spectra taken at Subaru and the VLT. The team's findings will be reported in two upcoming papers in the Astrophysical Journal and presented this week at a scientific conference in Garching, Germany.

The six-Jupiter-mass brown dwarf found in the NGC 1333 cluster is one of the least massive free-floating objects known. "Its mass is comparable to those of giant planets, yet it doesn't circle a star. How it formed is a mystery," said Aleks Scholz of the Dublin Institute of Advanced Studies in Ireland, lead author of one paper and a former postdoctoral fellow at the University of Toronto.

Several other newly identified brown dwarfs in both NGC 1333 and rho Ophiuchi clusters have masses below 20 times that of Jupiter.

"Brown dwarfs seem to be more common in NGC 1333 than in other young star clusters. That difference may be hinting at how different environmental conditions affect their formation," says University of Toronto’s Koraljka Muzic, lead author of the second paper.

"We could not have made these exciting discoveries if not for the remarkable capabilities of Subaru and the VLT. Instruments that can image large patches of the sky and take hundreds of spectra at once are key to our success," said co-author Motohide Tamura of the National Astronomical Observatory of Japan.

Other co-authors of the two papers are Vincent Geers of ETH Zurich in Switzerland, also a former UofT postdoc, and Mariangela Bonavita of the University of Toronto.

Note to media: Visit www.artsci.utoronto.ca/main/media-releases/brown-dwarfs-from-sonyc-survey for images and research papers associate with this media release.

MEDIA CONTACTS:

Ray Jayawardhana
Department of Astronomy and Astrophysics
University of Toronto
rayjay@astro.utoronto.ca
857-334-3406
Dr. Koraljka Muzic
University of Toronto
muzic@astro.utoronto.ca
416-978-4971
Dr. Aleks Scholz
Dublin Institute for Advanced Studies
aleks@cp.dias.ie
353 (0)86 126 6608
Dr. Motohide Tamura
National Astronomical Observatory of Japan
motohide.tamura@nao.ac.jp
+81 (0)90 7198 8360
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca
http://ww.artsci.utoronto.ca/main/media-releases/astronomers-find-bounty-of-failed-stars

More articles from Physics and Astronomy:

nachricht Weighing planets and asteroids
23.10.2018 | Max-Planck-Institut für Radioastronomie

nachricht Extremely Thin, Stable, and Bright: Materials for the Photonics of Tomorrow
23.10.2018 | Universität Bremen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>