Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover rare galaxy at dawn of time

22.12.2011
UC Riverside's Bahram Mobasher and Hooshang Nayyeri are members of international research team

Astronomers, including the University of California, Riverside's Bahram Mobasher and his graduate student Hooshang Nayyeri, have discovered that one of the most distant galaxies known is churning out stars at a shockingly high rate. The researchers made the discovery using NASA's Spitzer and Hubble space telescopes. The blob-shaped galaxy, called GN-108036, is the brightest galaxy found to date at such great distances.


This image shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy's light took 12.9 billion years to reach us. Credit: NASA/JPL-Caltech/STScI/University of Tokyo

The galaxy, which was discovered and confirmed using ground-based telescopes, is 12.9 billion light-years away. Data from Spitzer and Hubble were used to measure the galaxy's high star production rate, equivalent to about 100 suns per year. For reference, our Milky Way galaxy is about five times larger and 100 times more massive than GN-108036, but makes roughly 30 times fewer stars per year.

The discovery is surprising because previous surveys had not found galaxies this bright so early in the history of the universe. According to the researches, GN-108036 may be a special, rare object that they happened to catch during an extreme burst of star formation.

The international team of astronomers, led by Masami Ouchi of the University of Tokyo, Japan, first identified the remote galaxy after scanning a large patch of sky with the Subaru Telescope atop Mauna Kea in Hawaii. Its great distance was then carefully confirmed with the W.M. Keck Observatory, also on Mauna Kea.

GN-108036 lies near the very beginning of time itself, a mere 750 million years after our universe was created 13.7 billion years ago in an explosive "Big Bang." Its light has taken 12.9 billion years to reach us, so we are seeing it as it existed in the very distant past.

Astronomers refer to the object's distance by a number called its "redshift," which relates to how much its light has stretched to longer, redder wavelengths due to the expansion of the universe. Objects with larger redshifts are farther away and are seen further back in time. GN-108036 has a redshift of 7.2. Only a handful of galaxies have confirmed redshifts greater than 7, and only two of these have been reported to be more distant than GN-108036.

Infrared observations from Spitzer and Hubble were crucial for measuring the galaxy's star-formation activity. Astronomers were surprised to see such a large burst of star formation because the galaxy is so small and from such an early cosmic era. Back when galaxies were first forming, in the first few hundreds of millions of years after the Big Bang, they were much smaller than they are today, having yet to bulk up in mass.

During this epoch, as the universe expanded and cooled after its explosive start, hydrogen atoms permeating the cosmos formed a thick fog that was opaque to ultraviolet light. This period, before the first stars and galaxies had formed and illuminated the universe, is referred to as the "dark ages." The era came to an end when light from the earliest galaxies burned through, or "ionized," the opaque gas, causing it to become transparent. Galaxies similar to GN-108036 may have played an important role in this event.

"The high rate of star formation found for GN-108036 implies that it was rapidly building up its mass some 750 million years after the Big Bang, when the universe was only about five percent of its present age," said Mobasher, a professor of physics and astronomy. "This was therefore a likely ancestor of massive and evolved galaxies seen today."

The researchers report their findings in the Astrophysical Journal.

Other authors include: Kyle Penner and Benjamin J. Weiner of the University of Arizona, Tucson; Yoshiaki Ono, Kazuhiro Shimasaku and Kimihiko Nakajima of the University of Tokyo; Mark Dickinson and Jeyhan S. Kartaltepe of the National Optical Astronomy Observatory, Ariz.; Daniel Stern of NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif.; Nobunari Kashikawa of the National Astronomical Observatory of Japan; and Hyron Spinrad of UC Berkeley.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

Automated adhesive film placement and stringer integration for aircraft manufacture

15.11.2018 | Materials Sciences

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>