Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover, image new planet in planetary system very similar to our own

09.12.2010
An international team of astronomers has discovered and imaged a fourth giant planet outside our solar system, a discovery that further strengthens the remarkable resemblances between a distant planetary system and our own.
The research is published Dec. 8 in the advance online version of the journal Nature.

The astronomers say the planetary system resembles a supersized version of our solar system.

"Besides having four giant planets, both systems also contain two 'debris belts' composed of small rocky or icy objects, along with lots of tiny dust particles," said Benjamin Zuckerman, a UCLA professor of physics and astronomy and co-author of the Nature paper.

Our giant planets are Jupiter, Saturn, Uranus and Neptune, and our debris belts include the asteroid belt between the orbits of Mars and Jupiter and the Kuiper Belt, beyond Neptune's orbit.

The newly discovered fourth planet (known as HR 8799e) orbits a bright star called HR 8799, which lies some 129 light years from Earth and is faintly visible to the naked eye. The mass of the HR 8799 planetary system is much greater than our own. Astronomers estimate that the combined mass of the four giant planets may be 20 times greater than the mass of all the planets in our solar system, and the debris belt counterparts also contain much more mass than our own.

The new planet joins three previously discovered planets that were the subjects of a 2008 paper in the journal Science reporting the first-ever images of a planetary family orbiting a star other than our sun. Four of the co-authors of the new Nature paper, including Zuckerman, were also co-authors on that Science paper.

"This is the fourth imaged planet in this planetary system, and only a tiny percentage of known exoplanets (planets outside our solar system) have been imaged; none has been imaged in multiple-planet systems other than those of HR 8799," Zuckerman said.

All four planets orbiting HR 8799 are similar in size, likely between five and seven times the mass of Jupiter. The newly discovered planet orbits HR 8799 more closely than the other three. If it were in orbit around our sun, astronomers say, it would lie between the orbits of Saturn and Uranus.

The astronomers used the Keck II telescope at Hawaii's W.M. Keck Observatory to obtain images of the fourth planet. Zuckerman's colleagues are from Canada's National Research Council (NRC), Lawrence Livermore National Laboratory (LLNL) in California, and Lowell Observatory in Arizona.

"We reached a milestone in the search for other worlds in 2008 with the discovery of the HR 8799 planetary system," said Christian Marois, an NRC astronomer and lead author of the Nature paper. "The images of this new inner planet are the culmination of 10 years' worth of innovation, making steady progress to optimize every aspect of observation and analysis. This allows us to detect planets located ever closer to their stars and ever further from our own solar system."

"The four massive planets pull on each other gravitationally," said co-author Quinn Konopacky, a postdoctoral researcher at LLNL. "We don't yet know if the system will last for billions of years or fall apart in a few million more. As astronomers carefully follow the HR 8799 planets during the coming decades, the question of the stability of their orbits could become much clearer."

The origin of these four giant planets remains a puzzle; neither of the two main models of planet formation can account for all four.

"There's no simple model that can form all four planets at their current location," said co-author Bruce Macintosh of LLNL. "It's going to be a challenge for our theoretical colleagues."

It is entirely plausible that this planetary system contains additional planets closer to the star than these four planets, quite possibly rocky, Earth-like planets, Zuckerman said. But such interior planets are far more difficult to detect, he added.

"Images like these bring the exoplanet field, which studies planets outside our solar system, into an era of exoplanet characterization," said co-author Travis Barman, a Lowell Observatory exoplanet theorist. "Astronomers can now directly examine the atmospheric properties of four giant exoplanets that are all the same young age and that formed from the same building materials."

Detailed study of the properties of HR 8799e will be challenging due to the planet's relative faintness and its proximity to its star. To overcome those limitations, Macintosh is leading an effort to build an advanced exoplanet imager, called the Gemini Planet Imager, for the Gemini Observatory. This new instrument will physically block the starlight and allow quick detection and detailed characterization of planets similar to HR 8799e. UCLA and the NRC are also contributing to Gemini Planet Imager.

James Larkin, a UCLA professor of physics and astronomy, is building a major component of the imager, which is scheduled to arrive at the Gemini South Telescope in Chile late next year.

The research reported in Nature was funded by NASA, the U.S. Department of Energy and the National Science Foundation Center for Adaptive Optics. For more information, visit the NRC's website at www.nrc-cnrc.gc.ca.

UCLA is California's largest university, with an enrollment of more than 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 328 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Matter falling into a black hole at 30 percent of the speed of light
24.09.2018 | Royal Astronomical Society

nachricht Scientists solve the golden puzzle of calaverite
24.09.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>