Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover densest galaxy ever

25.09.2013
Imagine the distance between the sun and the star nearest to it – a star called Alpha Centauri. That’s a distance of about 4 light years. Now, imagine as many as 10,000 of our suns crammed into that relatively small space.

That is about the density of a galaxy that was recently discovered by an international team of astronomers led by a Michigan State University faculty member.


Astronomers have discovered what may be the densest galaxy in the nearby universe. The team that discovered the rare ultra-compact dwarf galaxy was led by MSU’s Jay Strader. The larger image was captured by NASA’s Chandra X-ray Observatory. The inset photo of the galaxy was taken by the Hubble Space Telescope.

“This galaxy is more massive than any ultra-compact drawfs of comparable size,” said Jay Strader, MSU assistant professor of physics and astronomy, “and is arguably the densest galaxy known in the local universe.”

As detailed in the recent edition of the publication Astrophysical Journal Letters, the ultra-compact dwarf galaxy was found in what’s known as the Virgo cluster of galaxies, a collection of galaxies located about 54 million light years from our own Milky Way.

What makes this galaxy, dubbed M60-UCD1, so remarkable is that about half of its mass is found within a radius of only about 80 light years. This would make the density of stars about 15,000 times greater than found in Earth’s neighborhood in the Milky Way.

“Traveling from one star to another would be a lot easier in M60-UCD1 than it is in our galaxy,” Strader said. “Since the stars are so much closer in this galaxy, it would take just a fraction of the time.”

The discovery of ultra-compact galaxies is relatively new – only within the past 10 years or so. Until then, astronomers could see these “things” way off in the distance but assumed they were either single stars or very-distant galaxies.

Another intriguing aspect of this galaxy is the presence of a bright X-ray source in its center. One explanation for this is a giant black hole weighing in at some 10 million times the mass of our sun.

Astronomers are trying to determine if M60-UCD1 and other ultra-compact dwarf galaxies are either born as really jam-packed star clusters or if they are galaxies that get smaller because they have stars ripped away from them. The possible massive black hole, combined with the high galaxy mass and sun-like levels of elements found in the stars, favor the latter idea.

A giant black hole at the center of M60-UCD1 helps tip the scales against the scenario where this galaxy was once a star cluster, since such large black holes are not found in these types of objects.

The galaxy was discovered using NASA’s Hubble Space Telescope. Follow-up observations were done with NASA’s Chandra X-ray Observatory and ground-based optical telescopes, including the Keck 10-meter telescope in Hawaii.

“Twenty years ago we couldn’t have done this,” Strader said. “We didn’t have Hubble or Chandra. This is one of those projects where you bring together the full force of NASA’s great observatories, plus ground-based resources.”

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Physics and Astronomy:

nachricht How heavy elements come about in the universe
18.03.2019 | Goethe-Universität Frankfurt am Main

nachricht Revealing the secret of the vacuum for the first time
15.03.2019 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

How heavy elements come about in the universe

18.03.2019 | Physics and Astronomy

Robot arms with the flexibility of an elephant’s trunk

18.03.2019 | Power and Electrical Engineering

Microbes can grow on nitric oxide (NO)

18.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>