Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrobiologists discover 'sweet spots' for the formation of complex organic molecules in the galaxy

03.11.2011
Scientists within the New York Center for Astrobiology at Rensselaer Polytechnic Institute have compiled years of research to help locate areas in outer space that have extreme potential for complex organic molecule formation.

The scientists searched for methanol, a key ingredient in the synthesis of organic molecules that could lead to life. Their results have implications for determining the origins of molecules that spark life in the cosmos.

The findings will be published in the Nov. 20 edition of the Astrophysical Journal in a paper titled "Observational constraints on methanol production in interstellar and preplanetary ices." The work is collaboration between researchers at Rensselaer, NASA Ames Research Center, the SETI Institute, and Ohio State University.

"Methanol formation is the major chemical pathway to complex organic molecules in interstellar space," said the lead researcher of the study and director of the NASA-funded center, Douglas Whittet of Rensselaer. If scientists can identify regions where conditions are right for rich methanol production, they will be better able to understand where and how the complex organic molecules needed to create life are formed. In other words, follow the methanol and you may be able to follow the chemistry that leads to life.

Using powerful telescopes on Earth, scientists have observed large concentrations of simple molecules such as carbon monoxide in the clouds that give birth to new stars. In order to make more complex organic molecules, hydrogen needs to enter the chemical process. The best way for this chemistry to occur is on the surfaces of tiny dust grains in space, according to Whittet. In the right conditions, carbon monoxide on the surface of interstellar dust can react at low temperatures with hydrogen to create methanol (CH3OH). Methanol then serves as an important steppingstone to formation of the much more complex organic molecules that are required to create life. Scientists have known that methanol is out there, but to date there has been limited detail on where it is most readily produced.

What Whittet and his collaborators have discovered is that methanol is most abundant around a very small number of newly formed stars. Not all young stars reach such potential for organic chemistry. In fact, the range in methanol concentration varies from negligible amounts in some regions of the interstellar medium to approximately 30 percent of the ices around a handful of newly formed stars. They also discovered methanol for the first time in low concentrations (1 to 2 percent) in the cold clouds that will eventually give birth to new stars.

The scientists conclude in the paper that there is a "sweet spot" in the physical conditions surrounding some stars that accounts for the large discrepancy in methanol formation in the galaxy. The complexity of the chemistry depends on how fast certain molecules reach the dust grains surrounding new stars, according the Whittet. The rate of molecule accumulation on the particles can result in an organic boom or a literal dead end.

"If the carbon monoxide molecules build up too quickly on the surfaces of the dust grains, they don't get the opportunity to react and form more complex molecules. Instead, the molecules get buried in the ices and add up to a lot of dead weight," Whittet said. "If the buildup is too slow, the opportunities for reaction are also much lower."

This means that under the right conditions, the dust surrounding certain stars could hold greater potential for life than most of its siblings. The presence of high concentrations of methanol could essentially jumpstart the process to create life on the planets formed around certain stars.

The scientists also compared their results with methanol concentrations in comets to determine a baseline of methanol production in our own solar system.

"Comets are time capsules," Whittet said. "Comets can preserve the early history of our solar system because they contain material that hasn't changed since the solar system was formed." As such, the scientists could look at the concentrations of methanol in comets to determine the amount of methanol that was in our solar system at its birth.

What they found was that methanol concentrations at the birth of our solar system were actually closer to the average of what they saw elsewhere in interstellar space. Methanol concentrations in our solar system were fairly low, at only a few percent, compared to some of the other methanol-dense areas in the galaxy observed by Whittet and his colleagues.

"This means that our solar system wasn't particularly lucky and didn't have the large amounts of methanol that we see around some other stars in the galaxy," Whittet said.

"But, it was obviously enough for us to be here."

The results suggest that there could be solar systems out there that were even luckier in the biological game than we were, according to Whittet. As we look deeper into the cosmos, we may eventually be able to determine what a solar system bursting with methanol can do.

###
The New York Center for Astrobiology
Based within the School of Science at Rensselaer Polytechnic Institute in Troy, N.Y., the New York Center for Astrobiology is devoted to investigating the origins of life on Earth and the conditions that lead to formation of habitable planets in our own and other solar systems. Supported by NASA, the $7 million center is a member of NASA's Astrobiology Institute (NAI), and is a partnership between Rensselaer and the University at Albany, Syracuse University, the University of Arizona, and the University of North Dakota. Researchers and students within the center seek to understand the chemical, physical, and geological conditions of early Earth that set the stage for life on our planet. They also look beyond our home planet to investigate whether the processes that prepared the Earth for life could be replicated elsewhere — on Mars and other bodies in our solar system, for example, and on planets orbiting other stars.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Listening to the quantum vacuum
26.03.2019 | Louisiana State University

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism

26.03.2019 | Earth Sciences

Mangroves and their significance for climate protection

26.03.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>