Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrobiologists discover 'sweet spots' for the formation of complex organic molecules in the galaxy

03.11.2011
Scientists within the New York Center for Astrobiology at Rensselaer Polytechnic Institute have compiled years of research to help locate areas in outer space that have extreme potential for complex organic molecule formation.

The scientists searched for methanol, a key ingredient in the synthesis of organic molecules that could lead to life. Their results have implications for determining the origins of molecules that spark life in the cosmos.

The findings will be published in the Nov. 20 edition of the Astrophysical Journal in a paper titled "Observational constraints on methanol production in interstellar and preplanetary ices." The work is collaboration between researchers at Rensselaer, NASA Ames Research Center, the SETI Institute, and Ohio State University.

"Methanol formation is the major chemical pathway to complex organic molecules in interstellar space," said the lead researcher of the study and director of the NASA-funded center, Douglas Whittet of Rensselaer. If scientists can identify regions where conditions are right for rich methanol production, they will be better able to understand where and how the complex organic molecules needed to create life are formed. In other words, follow the methanol and you may be able to follow the chemistry that leads to life.

Using powerful telescopes on Earth, scientists have observed large concentrations of simple molecules such as carbon monoxide in the clouds that give birth to new stars. In order to make more complex organic molecules, hydrogen needs to enter the chemical process. The best way for this chemistry to occur is on the surfaces of tiny dust grains in space, according to Whittet. In the right conditions, carbon monoxide on the surface of interstellar dust can react at low temperatures with hydrogen to create methanol (CH3OH). Methanol then serves as an important steppingstone to formation of the much more complex organic molecules that are required to create life. Scientists have known that methanol is out there, but to date there has been limited detail on where it is most readily produced.

What Whittet and his collaborators have discovered is that methanol is most abundant around a very small number of newly formed stars. Not all young stars reach such potential for organic chemistry. In fact, the range in methanol concentration varies from negligible amounts in some regions of the interstellar medium to approximately 30 percent of the ices around a handful of newly formed stars. They also discovered methanol for the first time in low concentrations (1 to 2 percent) in the cold clouds that will eventually give birth to new stars.

The scientists conclude in the paper that there is a "sweet spot" in the physical conditions surrounding some stars that accounts for the large discrepancy in methanol formation in the galaxy. The complexity of the chemistry depends on how fast certain molecules reach the dust grains surrounding new stars, according the Whittet. The rate of molecule accumulation on the particles can result in an organic boom or a literal dead end.

"If the carbon monoxide molecules build up too quickly on the surfaces of the dust grains, they don't get the opportunity to react and form more complex molecules. Instead, the molecules get buried in the ices and add up to a lot of dead weight," Whittet said. "If the buildup is too slow, the opportunities for reaction are also much lower."

This means that under the right conditions, the dust surrounding certain stars could hold greater potential for life than most of its siblings. The presence of high concentrations of methanol could essentially jumpstart the process to create life on the planets formed around certain stars.

The scientists also compared their results with methanol concentrations in comets to determine a baseline of methanol production in our own solar system.

"Comets are time capsules," Whittet said. "Comets can preserve the early history of our solar system because they contain material that hasn't changed since the solar system was formed." As such, the scientists could look at the concentrations of methanol in comets to determine the amount of methanol that was in our solar system at its birth.

What they found was that methanol concentrations at the birth of our solar system were actually closer to the average of what they saw elsewhere in interstellar space. Methanol concentrations in our solar system were fairly low, at only a few percent, compared to some of the other methanol-dense areas in the galaxy observed by Whittet and his colleagues.

"This means that our solar system wasn't particularly lucky and didn't have the large amounts of methanol that we see around some other stars in the galaxy," Whittet said.

"But, it was obviously enough for us to be here."

The results suggest that there could be solar systems out there that were even luckier in the biological game than we were, according to Whittet. As we look deeper into the cosmos, we may eventually be able to determine what a solar system bursting with methanol can do.

###
The New York Center for Astrobiology
Based within the School of Science at Rensselaer Polytechnic Institute in Troy, N.Y., the New York Center for Astrobiology is devoted to investigating the origins of life on Earth and the conditions that lead to formation of habitable planets in our own and other solar systems. Supported by NASA, the $7 million center is a member of NASA's Astrobiology Institute (NAI), and is a partnership between Rensselaer and the University at Albany, Syracuse University, the University of Arizona, and the University of North Dakota. Researchers and students within the center seek to understand the chemical, physical, and geological conditions of early Earth that set the stage for life on our planet. They also look beyond our home planet to investigate whether the processes that prepared the Earth for life could be replicated elsewhere — on Mars and other bodies in our solar system, for example, and on planets orbiting other stars.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>