Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembly stand completed for NASA's Webb Telescope flight optics

18.11.2011
The cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. has received a giant structural steel frame that will be used to assemble the mirrors and instruments of the James Webb Space Telescope.

"This milestone is important as it marks the transition to the integration and testing phase for the Webb telescope's optical telescope element," said Lee Feinberg, Optical Telescope Element Manager for the Webb telescope at Goddard.


This is the Webb Telescope Ambient Optical Assembly Stand. Credit: NASA/Maggie Masetti

The Webb telescope is the world's next-generation space observatory and scientific successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and study planets around distant stars.

The installation of the giant structural steel optical assembly stand was recently completed at Goddard by Northrop Grumman in Redondo Beach, Calif. and its teammate ITT Exelis, McLean, Va. Northrop Grumman is leading the design and development effort for the telescope under contract to Goddard.

"Due to the excellent efforts of our teammate ITT Exelis, we have completed each of the major elements of equipment required to complete the assembly of the optical flight telescope," said Scott Willoughby, Webb telescope vice president and program manager at Northrop Grumman Aerospace Systems. "With the near completion of the final cryotest for the last six flight mirror segments, we are making great progress on the program."

The U-shaped optical assembly stand is is 24 feet high, 52 feet wide and 41 feet long and weighs 139,000 pounds. Its purpose is to cradle the entire 3.7 metric ton optical telescope and install 18 individual 90 pound mirror segments and other components onto the telescope structure with better than one one-thousandth of an inch precision. The platform has been installed in Goddard's largest clean room where Northrop Grumman and ITT will assemble the telescope in late 2014.

ITT Exelis teammate JPW Companies in Syracuse, N.Y. built the massive structure. Two other ITT teammates supplied other elements of the assembly stand: Cranetech, Inc. designed and built the track system suspended above the stand and Progressive Machine and Design made the robotic arms attached to the track that install the mirror segments. The ITT Exelis team spent a year incrementally building and demonstrating the mirror installation equipment.

"The integration equipment is a critical piece of the Webb telescope program. Over the past three years, ITT Exelis has developed a risk reduction program to demonstrate the key elements of this equipment," said Rob Mitrevski, vice president and general manager, Intelligence, Surveillance and Reconnaissance Systems at ITT Exelis Geospatial Systems. "With the delivery of the assembly stand, all of the equipment is coming together in preparation for the telescope assembly effort."

The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about the James Webb Space Telescope, visit:
http://jwst.nasa.gov
To see the assembly stand and other Webb telescope components in Goddard's cleanroom, visit:

http://www.jwst.nasa.gov/webcam.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: ITT Space Space Telescope Telescope Webb telescope optical telescope

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>