Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence techniques reconstruct mysteries of quantum systems

27.02.2018

New machine learning techniques can help experimentalists probe systems of particles exponentially faster than conventional, brute-force techniques

The same techniques used to train self-driving cars and chess-playing computers are now helping physicists explore the complexities of the quantum world.


A new technique feeds experimental measurements of a quantum system to an artificial neural network. The network learns over time and attempts to impersonate the quantum system's behavior. With enough data, scientists can fully reconstruct the quantum system.

Credit: Giuseppe Carleo/Flatiron Institute

For the first time, physicists have demonstrated that machine learning can reconstruct a quantum system based on relatively few experimental measurements. This method will allow scientists to thoroughly probe systems of particles exponentially faster than conventional, brute-force techniques. Complex systems that would require thousands of years to reconstruct with previous methods could be wholly analyzed in a matter of hours.

The research will benefit the development of quantum computers and other applications of quantum mechanics, the researchers report February 26 in Nature Physics.

"We have shown that machine intelligence can capture the essence of a quantum system in a compact way," says study co-author Giuseppe Carleo, an associate research scientist at the Center for Computational Quantum Physics at the Flatiron Institute in New York City. "We can now effectively extend the capabilities of experiments."

Carleo, who conducted the research while a lecturer at ETH Zurich, was inspired by AlphaGo. This computer program used machine learning to outplay the world champion of the Chinese board game Go in 2016. "AlphaGo was really impressive," he says, "so we started asking ourselves how we could use those ideas in quantum physics."

Systems of particles such as electrons can exist in lots of different configurations, each with a particular probability of occurring. Each electron, for instance, can have either an upward or downward spin, similar to Schrödinger's cat being either dead or alive in the famous thought experiment. In the quantum realm, unobserved systems don't exist as any one of these arrangements. Instead, the system may be thought of as being is in all possible configurations simultaneously.

When measured, the system collapses into one configuration, just like Schrödinger's cat is either dead or alive once you open its box. This quirk of quantum mechanics means that you can never observe the entire complexity of a system in a single experiment. Instead, experimentalists conduct the same measurements over and over until they can determine the state of the whole system.

That method works well for simple systems containing only a few particles. But "things get nasty with a lot of particles," Carleo says. As the number of particles increases, the complexity skyrockets. If only considering that each electron can have either spin up or down, a system of five electrons has 32 possible configurations. A system of 100 electrons has more than 1 million trillion trillion.

The entanglement of particles further complicates matters. Through quantum entanglement, independent particles become intertwined and can no longer be treated as purely separate entities even when physically separated. This entanglement alters the probability of different configurations.

Conventional methods, therefore, just aren't feasible for complex quantum systems.

Giacomo Torlai of the University of Waterloo and the Perimeter Institute in Canada, Carleo and colleagues circumvented these limitations by tapping machine learning techniques. The researchers fed experimental measurements of a quantum system to a software tool based on artificial neural networks. The software learns over time and attempts to mimic the system's behavior. Once the software ingests enough data, it can accurately reconstruct the complete quantum system.

The researchers tested the software using mock experimental datasets based on different sample quantum systems. In these tests, the software far surpassed conventional methods. For eight electrons, each with spin up or down, the software could accurately reconstruct the system with only around 100 measurements. For comparison, a conventional brute-force method required almost 1 million measurements to reach the same level of accuracy. The new technique can also handle much larger systems. In turn, this ability can help scientists validate that a quantum computer is correctly set up and that any quantum software would run as intended, the researchers suggest.

Capturing the essence of complex quantum systems with compact artificial neural networks has other far-reaching consequences. Center for Computational Quantum Physics co-director Andrew Millis notes that the ideas provide an important new approach to the center's ongoing development of novel methods for understanding the behavior of interacting quantum systems, and connect with work on other quantum physics-inspired machine learning approaches.

Besides applications to fundamental research, Carleo says that the lessons the team learned as they blended machine learning with ideas from quantum physics could improve general-purpose applications of artificial intelligence as well. "We could use the methods we developed here in other contexts," he says. "Someday we might have a self-driving car inspired by quantum mechanics, who knows."

###

ABOUT THE FLATIRON INSTITUTE

The Flatiron Institute is the research division of the Simons Foundation. Its mission is to advance scientific research through computational methods, including data analysis, modeling and simulation. The institute's Center for Computational Quantum Physics aims to develop the concepts, theories, algorithms and codes needed to solve the quantum many-body problem and to use the solutions to predict the behavior of materials and molecules of scientific and technological interest.

Media Contact

Anastasia Greenebaum
communications@simonsfoundation.org
212-524-6097

http://www.simonsfoundation.org 

Anastasia Greenebaum | EurekAlert!

Further reports about: QUANTUM artificial quantum mechanics quantum systems spin up

More articles from Physics and Astronomy:

nachricht Belle II yields the first results: In search of the Z′ boson
06.04.2020 | Max-Planck-Institut für Physik

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>