Artificial butterfly in flight and filmed

Among the various types of butterflies, swallowtails are unique in that their wing area is very large relative to their body mass. This combined with their overlapping fore wings means that their flapping frequency is comparatively low and their general wing motion severely restricted.

As a result, swallowtails' ability to actively control the aerodynamic force of their wings is limited and their body motion is a passive reaction to the simple flapping motion, and not – as common in other types of butterfly – an active reaction to aerodynamics.

To prove that the swallowtail achieves forward flight with simple flapping motions, the researchers built a lifelike ornithopter in the same dimensions as the butterfly, copying the swallowtail's distinct wing shape and the thin membranes and veins that cover its wings.

Using motion analysis software, the researchers were able to monitor the ornithopter's aerodynamic performance, showing that flight can be realised with simple flapping motions without feedback control, a model which can be applied to future aerodynamic systems.

The article will be available to read from Thursday, 20 May at http://iopscience.iop.org/1748-3190/5/2/026003 and you can watch the video on IOP's YouTube channel here http://www.youtube.com/watch?v=Bcm4s1af56Q

Media Contact

Lena Weber EurekAlert!

More Information:

http://www.iop.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors