Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial atoms allow for magnetic resonance on individual cells

12.02.2013
Scientists at ICFO develop a technique for MRIs on a molecular scale

Researchers from the Institute of Photonic Sciences (ICFO), in collaboration with the CSIC and Macquarie University in Australia, have developed a new technique, similar to the MRI but with a much higher resolution and sensitivity, which has the ability to scan individual cells.

In an article published in Nature Nanotech, and highlighted by Nature, ICFO Prof. Romain Quidant explains how this was accomplished using artificial atoms, diamond nanoparticles doped with nitrogen impurity, to probe very weak magnetic fields such as those generated in some biological molecules.

The conventional MRI registers the magnetic fields of atomic nuclei in our bodies which have been previously excited by an external electromagnetic field. The collective response of all of these atoms makes it possible to diagnose and monitor the evolution of certain diseases. However, this conventional technique has a diagnostic resolution on a millimetric scale. Smaller objects do not give enough signal to be measured.

The innovative technique proposed by the group led by Dr. Quidant significantly improves the resolution at the nanometer scale (nearly one million times smaller than the millimeter), making it possible to measure very weak magnetic fields, such as those created by proteins. "Our approach opens the door for the performance of magnetic resonances on isolated cells which will offer new sources of information and allow us to better understand the intracellular processes, enabling noninvasive diagnosis," explains Michael Geiselmann, ICFO researcher who conducted the experiment. Until now, it has only been possible to reach this resolution in the laboratory, using individual atoms at temperatures close to the absolute zero (approx. -273 degrees Celsius.)

Individual atoms are structures that are highly sensitive to their environment, with a great ability to detect nearby electromagnetic fields. The challenge these atoms present is that they are so small and volatile that in order to be manipulated, they must be cooled to temperatures near the absolute zero. This complex process requires an environment that is so restrictive that it makes individual atoms unviable for potential medical applications. Artificial atoms used by Quidant and his team are formed by a nitrogen impurity captured within a small diamond crystal. "This impurity has the same sensitivity as an individual atom but is very stable at room temperature due to its encapsulation. This diamond shell allows us to handle the nitrogen impurity in a biological environment and, therefore, enables us to scan cells" argues Dr. Quidant.

To trap and manipulate these artificial atoms, researchers use laser light. The laser works like tweezers, leading the atoms above the surface of the object to study and extract information from its tiny magnetic fields.

The emergence of this new technique could revolutionize the field of medical imaging, allowing for substantially higher sensitivity in clinical analysis, an improved capacity for early detection of diseases, and thus a higher probability for successful treatment.

This research has been possible thanks to the support of the private foundation Cellex Barcelona.

ABOUT ICFO

ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia. ICFO is a center of research excellence devoted to the sciences and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer. As part of ICFO's goal to usher advances "made at ICFO" into society, the institute actively promotes the creation of spin-off companies by ICFO researchers.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts more than 250 researchers and PhD students working in more than 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO researchers publish in the most prestigious journals and collaborate with a wide range of companies around the world. In recognition of research excellence, ICFO has been awarded the elite Severo Ochoa distinction by the Government of Spain. Foundation Cellex finances the NEST program at ICFO which makes possible many ambitious frontier research projects.

Albert Mundet | EurekAlert!
Further information:
http://www.icfo.eu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>