Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial agent designs quantum experiments

19.01.2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by people. However, this could change soon. In the group of Innsbruck physicist Hans Briegel, researchers broach the question to what extent machines can carry out research autonomously.


The artificial agent uses optical elements such as this beam splitter to construct new and optimized experiments.

Harald Ritsch

For this purpose, they use the projective simulation model for artificial intelligence, developed by the group, to enable a machine to learn and act creatively. The memory of this autonomous machine stores many individual fragments of experience, which are networked together. The machine builds up and adapts its memories while learning from both successful and unsuccessful experience.

Now, the scientists from Innsbruck have teamed up Viennese colleagues in the group of Anton Zeilinger, who previously demonstrated the usefulness of automated procedures in the design of quantum experiments with a search algorithm called Melvin. Some of these computer-inspired experiments have already been performed in the lab of Zeilinger.

Together, the physicists have now understood that quantum experiments are an ideal environment to test the applicability of AI to research. Therefore, they used the projective simulation model to investigate the potential of artificial learning agents in this test-bed. In a paper published in the Proceedings of the National Academy of Sciences, the researchers now present their first results.

Optimized experiments designed by an AI-agent

All starts with an empty laboratory table for photonic quantum experiments. The artificial agent then tries to develop new experiments by virtually placing mirrors, prisms or beam splitters on the table. If its actions lead to a meaningful result, the agent has a higher chance to do similar sequence of actions in the future. This is known as a reinforcement learning strategy.

"Reinforcement learning is what distinguishes our model from the previously studied automated search, which is governed by unbiased random search," says Alexey Melnikov from the Department of Theoretical Physics at the University of Innsbruck.

"The artificial agent performs tens of thousands of experiments on the virtual laboratory table. When we analyzed the memory of the machine, we discovered that certain structures have developed," explains his colleague Hendrik Poulsen Nautrup. Some of these structures are already known to physicists as useful tools from modern quantum optical laboratories. Others are completely new and could, in the future, be tested in the lab.

“Reinforcement learning is what allows us to find, optimize and identify a huge amount of potentially interesting solutions," says Alexey Melnikov. "And sometimes it also provides answers to questions we didn't even ask."

Creative support in the laboratory

In the future, the scientists want to further improve their learning program. At this point, it is a tool that can autonomously learn to solve a given task. But can a machine be more than a tool? Can it provide more creative assistance to the scientists in basic research? This is what the scientists want to find out and only the future can tell what answers are in store for them.

The work was financially supported in part by the Austrian Science Fund FWF and the Templeton World Charity Foundation.

Publication: Active learning machine learns to create new quantum experiments. Alexey A. Melnikov, Hendrik Poulsen Nautrup, Mario Krenn, Vedran Dunjko, Markus Tiersch, Anton Zeilinger, and Hans J. Briegel. Proc. Natl. Acad. Sci. USA 2018 DOI: https://dx.doi.org/10.1073/pnas.1714936115

Contact:
Hendrik Poulsen Nautrup
Department of Theoretical Physics
University of Innsbruck
phone: +43 512 507 52243
email: hendrik.poulsen-nautrup@uibk.ac.at

Christian Flatz
Public Relations Office
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

https://www.uibk.ac.at/th-physik/qic-group/ - Quantum Information & Computation, University of Innsbruck
https://www.iqoqi-vienna.at/team/zeilinger-group/ - Zeilinger Group, IQOQI Vienna

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht Electrons use the zebra crossing
17.12.2018 | Universität Stuttgart

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>