Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Art of Recycling Pulsars

03.02.2012
Stellar Astrophysics helps to explain the behaviour of fast rotating neutron stars in binary systems

The formation of millisecond pulsars is the result of stellar cannibalism where matter flows from a donor star to an accreting pulsar in a binary system. During this process the pulsar emits X-rays while being spun up to amazingly high rotational speeds.Thomas Tauris (Bonn Univ. & MPIfR) can show that millisecond pulsars loose about half of their rotational energy during the final stages of the mass-transfer before the pulsar turns on its radio beam. This is in agreement with current observations and also explains why radio millisecond pulsars appear to be much older than their companion stars - and perhaps why no sub-millisecond radio pulsars exist at all.


An artist's impression of an accreting X-ray millisecond pulsar. The flowing material from the companion star forms a disk around the neutron star which is truncated at the edge of the pulsar magnetosphere. Credit: NASA / Goddard Space Flight Center / Dana Berry

Millisecond pulsars are strongly magnetized, old neutron stars in binary systems which have been spun up to high rotational frequencies by accumulation of mass and angular momentum from a companion star. Today we know of about 200 such pulsars with spin periods between 1.4-10 milliseconds. These are located in both the Galactic Disk and in Globular Clusters.

Since the first millisecond pulsar was detected in 1982 is has remained a challenge for theorists to explain their spin periods, magnetic fields and ages. As an example, there is the "turn-off" problem, i.e. what happens to the spin of the pulsar when the donor star terminates its mass-transfer process?

"We have now, for the first time, combined detailed numerical stellar evolution models with calculations of the braking torque acting on the spinning pulsar", says Thomas Tauris, the author of the present study. "The result is that the millisecond pulsars loose about half of their rotational energy in the so-called Roche-lobe decoupling phase." This phase is describing the termination of the mass transfer in the binary system. Hence, radio-emitting millisecond pulsars should spin slightly slower than their progenitors, X-ray emitting millisecond pulsars which are still accreting material from their donor star. This is exactly what the observational data seem to suggest. Furthermore, these new findings can help explain why some millisecond pulsars appear to have characteristic ages exceeding the age of the Universe and perhaps why no sub-millisecond radio pulsars exist.

The key feature of the new results is that it has now been demonstrated how the spinning pulsar is able to brake out of its so-called equilibrium spin. At this epoch the mass-transfer rate decreases which causes the magnetospheric radius of the pulsar to expand and thereby expelling the infalling matter like a propeller. This causes the pulsar to loose additional rotational energy and thus slow down its spin rate.

"Actually, without a solution to the "turn-off" problem we would expect the pulsars to even slow down to spin periods of 50-100 milliseconds during the Roche-lobe decoupling phase", concludes Thomas Tauris. "That would be in clear contradiction with observational evidence for the existence of millisecond pulsars."

This work has profited from a recent effort to bridge the Stellar Physics group at the Argelander-Institut für Astronomie at University of Bonn (led by Norbert Langer) with the Fundamental Physics in Radio Astronomy group at the Max-Planck-Institut für Radioastronomie (led by Michael Kramer). The stellar evolution models used for this work were made using a state-of-the-art code developed by Norbert Langer. A significant part of the observational data was supplied by the pulsar group. Michael Kramer and his colleagues are using the 100-m Effelsberg Radio Telescope to participate in several ongoing searches and discoveries of millisecond pulsars.

Thomas Tauris has been working at the Argelander-Institut für Astronomie and the Max-Planck-Institut für Radioastronomie as a visiting research professor since 2010. Some of his recent work on the recycling of millisecond pulsars has been published in the journal "Monthly Notices of the Royal Astronomical Society" in joint publications with Norbert Langer and Michael Kramer. On February 27 they host an international one-day workshop in Bonn on the "Formation and Evolution of Neutron stars".
Share

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de/public/pr/pr-pulsar-ttauris-feb2012-en.html

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>