Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019

Data from the probe's 1995 fireball has continued to confound those studying the mission. New simulations and faster computers point to bettering atmospheric entry vehicles.

The entry probe of the Galileo mission to Jupiter entered the planet's atmosphere in 1995 in fiery fashion. As the probe descended from Mach 50 to Mach 1 and generated enough heat to cause plasma reactions on its surface, it relayed data about the burning of its heat shield that differed from the effects predicted in fluid dynamics models. New work examines what might have caused such a discrepancy.


The entry probe of the Galileo mission to Jupiter entered the planet's atmosphere in 1995 in fiery fashion, generating enough heat to cause plasma reactions on its surface. The data relayed about the burning of its heat shield differed from the effects predicted in fluid dynamics models, and new work examines what might have caused such a discrepancy. Researchers report their findings from new fluid radiative dynamics models in this week's Physics of Fluids. This image shows the high temperature flowfield around Galileo spacecraft upon entry to Jupiter, with ray-tracing algorithm distribution visualized.

Credit: Luís S. Fernandes

Usage Restrictions: Journalists may use this image only with appropriate credit.

Researchers at the Universidade de Lisboa and the University of Illinois at Urbana-Champaign report their findings from new fluid radiative dynamics models using data transmitted from the of Galileo's 30-second entry. The paper, published in Physics of Fluids, from AIP Publishing, employs new computational techniques developed in the nearly 25 years since the mission.

"Early simulations for the probe design were conducted in the 1980s," said Mario Lino da Silva, an author on the paper. "There are some things we can do in 2019, because we have the computational power, new devices, new theories and new data."

Galileo's probe entered Jupiter's gravity traveling 47.4 kilometers per second, making it one of the fastest man-made objects ever. The fireball caused by the descent warmed the carbon phenolic heat shield to temperatures hotter than the sun's surface.

Data from the probe revealed the rim of the heat shield burned significantly more than even today's models would predict, measured by what is called the recession rate.

"The fireball is a kind of soup where a lot of things happen at the same time," he said. "One problem with modeling is that there are many sources of uncertainty and only one observed parameter, the heat shield recession rate."

The group recalculated features of the hydrogen-helium mixture the probe passed through, such as viscosity, thermal conductivity and mass diffusion, and found the oft-cited Wilke/Blottner/Eucken transport model failed to accurately model interactions between hydrogen and helium molecules.

They found the radiative heating properties of hydrogen molecules played a significant role in the additional heating the probe's heat shield experienced.

"The built-in heat shield engineering margins actually saved the spacecraft," Lino da Silva said.

Lino da Silva hopes the work helps improve future spacecraft design, including upcoming projects to explore Neptune that will likely not reach their destinations until after he has retired.

"In a way, it's like building cathedrals or the pyramids," he said. "You don't get to see the work when it's finished."

Lino da Silva next looks to validate some of the simulated findings by reproducing similar conditions in a shock-tube facility tailored for reproducing high-speed flows.

###

The article, "Computational fluid radiative dynamics of the Galileo Jupiter entry," is authored by Luis dos Santos Fernandes, Bruno Lopez and Mario Lino da Silva. The article will appear in Physics of Fluids on Oct. 15, 2019 (DOI: 10.1063/1.5115264). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5115264.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See https://aip.scitation.org/journal/phf.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org 

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5115264

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>