The AMS detector heads for the International Space Station

In laboratories like CERN*, physicists observe matter and antimatter behaving in an almost identical way. Each matter particle has an equivalent antiparticle, very similar but with opposite charge. When particles of matter and antimatter meet, they annihilate. Matter and antimatter would have been created in equal amounts at the Big Bang, yet today we live in a Universe apparently made entirely of matter.

Does nature have a preference for matter over antimatter? One of the main challenges of AMS will be to address this question by searching for single nuclei of antimatter that would signal the existence of large amounts of antimatter elsewhere in the Universe. To achieve this, AMS will track cosmic rays from outer space with unprecedented sensitivity.

“The cosmos is the ultimate laboratory,” said Nobel laureate and AMS Spokesperson Samuel Ting. “From its vantage point in space, AMS will explore such issues as Antimatter, Dark Matter and the origin of Cosmic Rays. However, its most exciting objective is to probe the unknown because whenever new levels of sensitivities are reached in exploring an unchartered realm, exciting and unimagined discoveries may be expected. “

In the same way that telescopes catch the light from the stars to better understand the Universe, AMS is a particle detector that will track incoming charged particles such as protons, electrons and atomic nuclei that constantly bombard our planet. By studying the flux of these cosmic rays with very high precision, AMS will have the sensitivity to identify a single antinucleus among a billion other particles.

“This is a very exciting moment for basic science,” said CERN Director General Rolf Heuer. “We expect interesting complementarities between AMS and the LHC. They look at similar questions from different angles, giving us parallel ways of addressing some of the Universe’s mysteries.”

AMS may also bring an important contribution to the search for the mysterious dark matter that would account for about 25% of the total mass-energy balance of the Universe. In particular, if dark matter is composed of supersymmetric particles, AMS could detect it indirectly by recording an anomaly in the flux of cosmic rays.

“Never in the history of science have we been so aware of our ignorance,” said AMS Deputy Spokesperson Roberto Battiston. “Today we know that we do not know anything about what makes up 95% of our Universe”.

AMS is a CERN recognized experiment and as such has benefited from CERN’s expertise in integrating large projects, from CERN’s vacuum and magnet groups and from test beam facilities for calibrating the detectors. In addition, the Payload Operation Centre (POC) of AMS will open in June 2011 at CERN, very near to the place where the AMS detector was assembled in clean room facilities. From the POC, physicists will be able to run the AMS detector as well as receive and analyse data arriving from the International Space Station.

AMS is the result of a large international collaboration with a major European participation. It is led by Nobel laureate Samuel Ting and involves about 600 researchers from CERN Member States (Denmark, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland) as well as from China, Korea, Mexico, Taiwan, and the United-States.

Follow the launch of AMS live:

The launch of AMS can be followed live via webcast at: http://webcast.cern.ch
Questions can be asked during the webcast by sending them to @cern on twitter

The live will also be broadcasted through EBU Eurovision services.
A VNR preview will be broadcasted on 28 April 2011, 10:00 – 10:15 GMT.
More information on http://www.eurovision.net/

Videos are available at: http://bit.ly/cernamsfootage
Videos are subject to the CDS conditions of use: http://bit.ly/CDSconditionsofuse

For updates about AMS, follow @astroparticle and @ams_02

Information about AMS can be found at www.ams02.org

Contacts:
CERN Press Office, press.office@cern.ch
+41 22 767 37 09
+41 22 767 34 32
+41 22 767 21 41

Leaders of AMS in Europe:

Denmark | Jes Madsen (Aarhus University) |
jesm@phys.au.dk

France | Sylvie Rosier-Lees (CNRS) | rosier@lapp.in2p3.fr |
Mobile: +33 6 33 40 24 48

Finland | Eino Valtonen (SRL) | eikka@utu.fi |
+358 2 333 5644

Germany | Stefan Schael (RWTH) | schael@physik.rwth-aachen.de |
Mobile: +49 173 721 721 2

Italy | Roberto Battiston (INFN) | roberto.battiston@pg.infn.it |
Mobile: +39 366 687 2527

The Netherlands | Johannes van Es (NLR) | jvanes@nlr.nl

Portugal | Fernando Barao (LIP) | barao@lip.pt |: +351 21 797 3880

Spain | Manuel Aguilar (CIEMAT) | manuel.aguilar@ciemat.es |
+34 636959701 | +34 91 2466589

Switzerland | Martin Pohl (UNIGE) | martin.pohl@cern.ch |
Mobile: +41 76 487 0405

Follow CERN at:
www.cern.ch
http://twitter.com/cern/
http://www.youtube.com/user/CERNTV
http://www.quantumdiaries.org/

Media Contact

CERN Press Office

More Information:

http://www.cern.ch

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors