Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames laboratory physicist develops 'electrifying' theory

19.08.2008
Analysis will improve superconducting fault-current limiters

John R. Clem, a physicist at the U.S. Department of Energy’s Ames Laboratory, has developed a theory that will help build future superconducting alternating-current fault-current limiters for electricity transmission and distribution systems.

Clem’s work identifies design strategies that can reduce costs and improve efficiency in a bifilar fault-current limiter, a new and promising type of superconducting fault-current limiter.

“I was able to theoretically confirm that planned design changes to the current bifilar fault-current limiter being developed by Siemens and American Superconductor would decrease AC losses in the system,” said Clem. “My calculations are good news for the future of the device.”

Fault-current limiters protect power grids from sudden spikes in power, much like household surge protectors are used to save televisions and computers from damage during a lightning strike. Limiting fault currents is becoming an increasingly critical issue for large urban utilities, since these currents grow along with growing electric power loads. Superconductors enable a novel and very promising type of fault current limiter — or “firewall” — that rapidly switches to a resistive state when current exceeds the superconductors critical current. At the same time, in normal operation, the superconductors’ near-zero AC resistance minimizes power loss and makes the fault current limiter effectively “invisible” in the electric grid.

Clem analyzed a type of fault-current limiter, called a bifilar fault-current limiter, developed by Siemens and American Superconductor Corporation, who are now under contract with the DOE to demonstrate the technology at transmission voltages in the power grid of Southern California Edison. The team also includes Nexans, which is developing the terminations for the transmission fault-current limiter, and Air Liquide, which is providing the cryogenic cooling system.

Bifilar fault-current limiters are made from many turns of insulated superconducting tape wound into a coil shaped like a disk or a pancake. The tape consists of a thin, flat strip of superconducting material sandwiched between two strips of stainless steel. In the bifilar fault-current limiter design, adjacent tapes in the pancake coil carry current in opposite directions to effectively cancel out each tape’s magnetic fields, thereby limiting electrical losses.

Siemens and American Superconductor were seeking to optimize the performance of their bifilar design. They asked Clem to predict how AC losses would change as the width of the tape is increased. Clem reported his findings, "Field and current distributions and ac losses in a bifilar stack of superconducting strips," in a recent issue of Physical Review B.

“I modeled the bifilar design as an infinite stack of superconducting tapes, in which adjacent tapes carry current in opposite directions,” said Clem. “I was able to find an exact solution for the magnetic fields and currents that are generated in such a stack of tapes. Once I calculated how the magnetic flux penetrates into the tape, I then could calculate how much energy is lost in each current cycle for different tape widths and spacings between adjacent tapes.”

“Clem’s result was not obvious since there are competing mechanisms for AC loss in the bifilar configuration. It turns out that for typical parameters, when the spacing between adjacent tapes is small enough, the result is very simple: AC losses decrease as the tape width increases and the spacing decreases,” said Alex Malozemoff, chief technical officer of American Superconductor. “This result is helping to guide us and our partner Siemens in an optimized design for a fault- current limiter in a major DOE-sponsored program, and it is expected to open a path to a commercial product in the future.”

Clem’s research was funded by the DOE Office of Science, Basic Energy Sciences Office.

Ames Laboratory is a U.S. Department of Energy Office of Science laboratory operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration .

Breehan G Lucchesi | EurekAlert!
Further information:
http://ww.ameslab.gov

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>