Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Always on beat: ultrashort flashes of light under optical control

16.10.2019

Ultrashort laser pulses have enabled scientists and physicians to carry out high-precision material analyses and medical procedures. Physicists from the University of Bayreuth and the University of Göttingen have now discovered a new method for adjusting the extremely short time intervals between laser flashes with exceptional speed and precision. The intervals can be increased or decreased as needed, all at the push of a button. Potential applications range from laser spectroscopy to microscopy and materials processing. The researchers have now presented their latest findings in the journal Nature Photonics.

Laser pulses have long been utilized in research laboratories, industrial production, and medical therapies. In these applications it is often crucial that the pulses – also known as optical solitons – occur at certain intervals.


Light pulses can form pairs in ultra-short pulse lasers. The pulse intervals (red) can be precisely adjusted by making certain changes to pump beam (green).

Image: UBT

Using a special high-speed measurement technique, the researchers have now been able to show how a short-pulse laser widely applied in research can be made to automatically generate pairs of light pulses separated by the desired interval.

All that is required are small disturbances in the green optical "pump beam” (which generates the laser pulses) triggered by electric signals.

The new process centres on the targeted manipulation of solitons, wave packets that can occur in pairs in ultrashort laser pulses. "The resonance excitation and the short disturbance of soliton pairs trigger effects that can be used to specifically control ultrashort laser pulses.

This opens up an exciting new area of research with a yet unforeseeable range of possible applications," said Prof. Dr. Georg Herink from Bayreuth, corresponding author of the new study. "At the right frequency, a tiny external modulation of the laser is all you need, and ultrashort laser pulses are set into reciprocal, resonant oscillation.

Similar phenomena can be observed in water molecules heated in the microwave," added lead author Felix Kurtz from Göttingen.

The newly published findings show that in the future, ultra-short pulse lasers will not only be considered as a tool, but also remain a fascinating object of research.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Herink
Experimental Physics VIII
University of Bayreuth
Phone: +49 (0)921 / 55-3161
E-mail: georg.herink@uni-bayreuth.de

Originalpublikation:

F. Kurtz, C. Ropers, G. Herink: Resonant excitation and all-optical switching of femtosecond soliton molecules. Nature Photonics (2019), DOI: http://dx.doi.org/10.1038/s41566-019-0530-3

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de/

More articles from Physics and Astronomy:

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>