Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminum alloy overcomes obstacles on the path to making hydrogen a practical fuel source

01.11.2011
Hydrogen offers great promise as a renewable energy source. It's staggeringly plentiful (the most abundant element in the Universe) and environmentally friendly (used in a fuel cell, it gives off only water). Unfortunately, storing and transporting hydrogen for personal use is a significant engineering challenge.

Now, a team of researchers from the University of Texas at Dallas and Washington State University in Pullman, Wash., has made the counterintuitive discovery that aluminum, with a minor modification, is able to both break down and capture individual hydrogen atoms, potentially leading to a robust and affordable fuel storage system.

In nature, when two atoms of hydrogen meet they combine to form a very stable molecule (H2). Molecular hydrogen, however, has to be stored under great pressure and at very low temperatures, which is impractical if you want to power a vehicle or provide electricity for a home. A better solution would be to find a material that, at easily maintained temperatures and pressures, could efficiently store individual hydrogen atoms and release them on demand.

The first step in this process – hydrogen activation, breaking the chemical bonds that hold two hydrogen atoms together – is typically done by exposing molecular hydrogen to a catalyst. The best catalytic materials currently available are made of so-called "noble metals" (e.g. palladium and platinum). These elements efficiently enable hydrogen activation, but their scarcity makes them prohibitively expensive for widespread use.

In the quest to find an equally efficient yet less-expensive alternative, lead researcher Yves J. Chabal of the University of Texas at Dallas and Santanu Chaudhuri at Washington State University have identified a potential new hydrogen activation method that has the additional advantage of being an effective hydrogen-storage medium. Their proposed system relies on aluminum, a plentiful but inert metal that under normal conditions doesn't react with molecular hydrogen.

The key to unlocking aluminum's potential, the researchers surmised, is to impregnate its surface with some other metal that would facilitate the catalytic reaction. In this case, the researchers tested titanium, which is much more plentiful than noble metals and is used only sparingly in creating the titanium-doped aluminum surface.

Under very controlled temperatures and pressures, the researchers studied the aluminum surface, particularly in the vicinity of the titanium atoms, for telltale signs that catalytic reactions were taking place. The "smoking gun" was found in the spectroscopic signature of carbon monoxide (CO), which was added to the system to help identify areas of hydrogen activity. If atomic hydrogen were present, then the wavelength of light absorbed by the carbon monoxide bound to the catalytic metal center would become shorter, signaling that the catalyst was working.

"We've combined a novel infrared reflection absorption-based surface analysis method and first principles-based predictive modeling of catalytic efficiencies and spectral response, in which a carbon monoxide molecule is used as a probe to identify hydrogen activation on single-crystal aluminum surfaces containing catalytic dopants," says Chaudhuri.

Their studies revealed that in areas doped with titanium, the infrared signature of the CO shifted to shorter wavelengths even at very low temperatures. This "blue shift" was an indication that atomic hydrogen was being produced around some of the catalytic centers on an aluminum surface.

As part of a hydrogen storage system, an aluminum-supported catalyst has other advantages over more expensive metals. If technical advances like this can provide a pathway for aluminum to combine with hydrogen to form aluminum hydride (a stable solid with a composition ratio of a single aluminum atom to three hydrogen atoms) and store hydrogen as a high-density solid-state material, a critical step in developing a practical fuel system can be achieved.

The titanium further advances the process by helping the hydrogen bind to the aluminum to form aluminum hydride. If used as a fuel-storage device, the aluminum hydride could be made to release its store of hydrogen by simply raising its temperature.

"Although titanium may not be the best catalytic center for fully reversible aluminum hydride formation, the results prove for the first time that titanium-doped aluminum can activate hydrogen in ways that are comparable to expensive and less-abundant catalyst metals such as palladium and other near-surface alloys consisting of similar noble metals and their bimetallic analogs," Chaudhuri explains.

Irinder Chopra, the lead student in this project, will present this research at AVS' 58th International Symposium & Exhibition, held Oct. 30 – Nov. 4, 2011, in Nashville, Tenn. A paper based on this research – "Turning Aluminum into a noble-metal like catalyst for low-temperature molecular hydrogen activation" –was published online in the journal Nature Materials on September 25. Support for this research came from the Department of Energy – Office of Basic Energy Sciences.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation SS1-TuM-4, "Turning Aluminum into a Noble-metal like Catalyst for Low Temperature Molecular Hydrogen Activation," is at 9 a.m. on Tuesday, Nov. 1.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht 4D imaging with liquid crystal microlenses
20.11.2019 | American Chemical Society

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>