Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminum alloy overcomes obstacles on the path to making hydrogen a practical fuel source

01.11.2011
Hydrogen offers great promise as a renewable energy source. It's staggeringly plentiful (the most abundant element in the Universe) and environmentally friendly (used in a fuel cell, it gives off only water). Unfortunately, storing and transporting hydrogen for personal use is a significant engineering challenge.

Now, a team of researchers from the University of Texas at Dallas and Washington State University in Pullman, Wash., has made the counterintuitive discovery that aluminum, with a minor modification, is able to both break down and capture individual hydrogen atoms, potentially leading to a robust and affordable fuel storage system.

In nature, when two atoms of hydrogen meet they combine to form a very stable molecule (H2). Molecular hydrogen, however, has to be stored under great pressure and at very low temperatures, which is impractical if you want to power a vehicle or provide electricity for a home. A better solution would be to find a material that, at easily maintained temperatures and pressures, could efficiently store individual hydrogen atoms and release them on demand.

The first step in this process – hydrogen activation, breaking the chemical bonds that hold two hydrogen atoms together – is typically done by exposing molecular hydrogen to a catalyst. The best catalytic materials currently available are made of so-called "noble metals" (e.g. palladium and platinum). These elements efficiently enable hydrogen activation, but their scarcity makes them prohibitively expensive for widespread use.

In the quest to find an equally efficient yet less-expensive alternative, lead researcher Yves J. Chabal of the University of Texas at Dallas and Santanu Chaudhuri at Washington State University have identified a potential new hydrogen activation method that has the additional advantage of being an effective hydrogen-storage medium. Their proposed system relies on aluminum, a plentiful but inert metal that under normal conditions doesn't react with molecular hydrogen.

The key to unlocking aluminum's potential, the researchers surmised, is to impregnate its surface with some other metal that would facilitate the catalytic reaction. In this case, the researchers tested titanium, which is much more plentiful than noble metals and is used only sparingly in creating the titanium-doped aluminum surface.

Under very controlled temperatures and pressures, the researchers studied the aluminum surface, particularly in the vicinity of the titanium atoms, for telltale signs that catalytic reactions were taking place. The "smoking gun" was found in the spectroscopic signature of carbon monoxide (CO), which was added to the system to help identify areas of hydrogen activity. If atomic hydrogen were present, then the wavelength of light absorbed by the carbon monoxide bound to the catalytic metal center would become shorter, signaling that the catalyst was working.

"We've combined a novel infrared reflection absorption-based surface analysis method and first principles-based predictive modeling of catalytic efficiencies and spectral response, in which a carbon monoxide molecule is used as a probe to identify hydrogen activation on single-crystal aluminum surfaces containing catalytic dopants," says Chaudhuri.

Their studies revealed that in areas doped with titanium, the infrared signature of the CO shifted to shorter wavelengths even at very low temperatures. This "blue shift" was an indication that atomic hydrogen was being produced around some of the catalytic centers on an aluminum surface.

As part of a hydrogen storage system, an aluminum-supported catalyst has other advantages over more expensive metals. If technical advances like this can provide a pathway for aluminum to combine with hydrogen to form aluminum hydride (a stable solid with a composition ratio of a single aluminum atom to three hydrogen atoms) and store hydrogen as a high-density solid-state material, a critical step in developing a practical fuel system can be achieved.

The titanium further advances the process by helping the hydrogen bind to the aluminum to form aluminum hydride. If used as a fuel-storage device, the aluminum hydride could be made to release its store of hydrogen by simply raising its temperature.

"Although titanium may not be the best catalytic center for fully reversible aluminum hydride formation, the results prove for the first time that titanium-doped aluminum can activate hydrogen in ways that are comparable to expensive and less-abundant catalyst metals such as palladium and other near-surface alloys consisting of similar noble metals and their bimetallic analogs," Chaudhuri explains.

Irinder Chopra, the lead student in this project, will present this research at AVS' 58th International Symposium & Exhibition, held Oct. 30 – Nov. 4, 2011, in Nashville, Tenn. A paper based on this research – "Turning Aluminum into a noble-metal like catalyst for low-temperature molecular hydrogen activation" –was published online in the journal Nature Materials on September 25. Support for this research came from the Department of Energy – Office of Basic Energy Sciences.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation SS1-TuM-4, "Turning Aluminum into a Noble-metal like Catalyst for Low Temperature Molecular Hydrogen Activation," is at 9 a.m. on Tuesday, Nov. 1.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Searching for disappeared anti-matter: A successful start to measurements with Belle II
26.03.2019 | Max Planck Institute for Physics

nachricht Extremely accurate measurements of atom states for quantum computing
26.03.2019 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>